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Preface

This is a first draft of a syllabus intended to be used as a guide 

for a short course in the subject of sampling designs for conducting 

geochemical surveys. It was prepared for a course sponsored by the 

Division of Continuing Education, University of Calgary, on November 2-4, 

1976, at the invitation of Dr. J. E. Klovan, Head, Department of Geology.

Sampling programs in field geochemistry vary widely in scope and 

purpose and are directed at regions that may differ greatly in geologic 

character. There is no single sampling design no general type of 

design that will be adequate and efficient in all situations. There 

fore, the best that a syllabus such as this can do is to offer some 

general principles that can be applied to the development of a sampling 

design that will suit a particular need. It appears obvious to me 

that the most useful and applicable principles are those associated 

with the methods of analysis of variance, and most of this syllabus leads 

up to the application of analysis of variance methods to geochemical 

sampling problems. Other parts, supplementary in nature, are intended 

to introduce the reader to some particular statistical methods that may 

be of use in the analysis and interpretation of geochemical data. As 

with most statistical methods, however, none can be properly applied 

unless the sampling was appropriate.

One essential element of any sampling design is a randomization 

procedure, particularly in the selection of the precise sampling points. 

The notion of random sampling disturbs some geologists because they 

feel that the samples should be collected purely on the basis of
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Sampling designs for geochemical surveys 

I. General

The purpose of the course is to introduce the student to *< 

statistical concepts and methods that can be used to design geochamical 

sampling programs in ways that will enable him to judge the reliability 

of the result* of the program (commonly, geochemical maps) with some 

degree of objectivity. The same principles will enable him to design 

sampling programs that have maximum efficiency in terms of both field 

and laboratory costs, 

1) Purpose and scope of geochemical surveys *

a) Geochemical exploration for mineral deposits to identify 

geochemical anomalies, i.e., areas within a region that are 

distinctly different geochemically from the region as a whole,

b) Environmental geochemistry to describe the geochemical character 

of a region, and its variation in geochemical character, in ways 

that will be of use in epidemiological studies by medical 

scientists.

c) Investigations of environmental pollution to measure the

intensity and extent of alterations in the geochemical environment 

caused by activities a»f man*

d) Geologic studies to measure the abundance and distributions of 

the elements, on local to global scales, as a means of studying 

both local and global geologic processes.



2) Geological populations as frameworks for sampling*

In statistics, a population ia any sat of individuals (or objects) 

having some common observable characteristic; a statiatieal sample is 

a subaet of tha population (Dixon and Maasey, 1957, p. 30). In geology, 

we usually ara interested in rock or soil units that can be regarded 

as populations only after they have been conceptually subdivided into 

individuals. Each of the individuals constitutes a potential geological 

sample, and a group of these saaplea constitutes the statistical sample* 

Whether the population is a rock or soil unit or a population in tha 

true statistical sense of the word, it can be defined in any manner 

suitable for the purpose of the investigation* In many investigations, 

and particularly in those directed at rock units, it is important to 

distinguish between the target populations at which the investigations 

are directed and sampled or available populations which ara accessible 

for sampling. A sampling frame ia a list of all tha individuals in the 

population and can be used to select samples by objective procedures; 

sampling frames are almost never available in geochemical sampling and 

so, other methods of selecting samples objectively must be used.



3) Concept and definition of sampling localities*

An individual sample or group of samples is usually taken from 

a rock or soil unit to represent some part of the unit that is larger 

than the sample itself  This part of the unit is the samp ling 

locality. Many sampling plans are nested and involve sampling at a 

number of levels. Thus, areas may be selected Hi thin the region, sites 

may be selected within the areas, and points may be selected within 

the sites. The areas constitute the master sampling localities» and 

the sites are minor sampling localities. In many designs, sampling 

localities of intermediate scale may occur. The sampling points are 

the specific exact locations from which the samples are taken and cannot 

be resampled. The sampling localities can be defined in any manner 

suitable for the purpose of the investigation. In sampling stratified 

rocks, for example, the sampling localities may be stratigraphic 

sections or parts o  sections. In many geochemical exploration programs 

based on stream sediment sampling, the sampling localities are segments 

of streams or stream intersections.



4) A 3»neral statistical model for geochemical sampling.

A statistics! modal is formed to define the sampling problem and 

to specify the sampling design* The sampling and statistical analysis 

are performed in accordance with the model and serve to estimate 

parameters associated with the model* Sampling designs may be based 

on a variety of different models depending on the nature and purpose 

of the investigation, but a general nested* or hierarchical, model is 

appropriate in a great many geochemical problems* This model can be 

used to estimate the nature of the geochemical variability and, therefore, 

as a first step in designing an efficient final sampling program* The 

model will be described on a term*bytera basis.

If a rock or soil unit were perfectly homogeneous on a sample-to- 

sample scale, the geochemical value for the *&\ sample, %^, would be 

the same for all samples and equal to the mean,M , for the entire unit:

^i ' /" * (1)

Laboratory measurement of the geochemical values, however would involve 

at least some error, and a more realisltic model is:

(2)

where £^ is the measurement error for the laboratory determination on 

the si& sample* If the sum of all values of ^ tends toward sero as 

the number of values increases, the sum of 3~J for all samples, divided 

by the number of samples, will tend towards^£« However, if the sum of 

e^ does not tend towards sero, the experiment will lead to biased results* 

The population of the values of 3^ oust have a mean of sero for the



 odel to be valid* The total experiment (sampling, laboratory analysis , 

and statistical treatment) mast be conducted in such a way that the 

values of «£, contained in the observed values of ̂  will tend toward 

sero as the number of samples is increased*

Suppose now that the rock or soil unit varied in composition on 

a regional scale so that the master sampling localities were each 

compositionally homogeneous but varied from one to another. Suppose 

also that one sample was collected from each locality and that more 

than one analysis was made of each* The appropriate sampling model 

then would be:

The term <X   in this model is the difference between the mean for the
As

entire rock or soil unit and the value for the entire JJ&- master 

sampling locality, and >^L is the f^~ analytical determination on the 

sample from the *XL. locality* Suppose further that each of the master 

sampling localities varied internally and that a number of samples 

were taken from eech of them* The sampling model would be:

In this model, ^V>t represents the * analytical determination on 

the j^ sample from the -*^ sampling locality; M , as before, is the 

grand mean value for all individuals in the population; oc^ is the 

difference between the grand mean and the mean for the <*££' locality, 

fi- is the difference between the 1ft sample from the -^- locality

and the mean for the ^- locality, and e-'^ i« the error in the
d

analytical determination on the ; tL> sample from the *&^ locality*



Each of the sub scrip Cad tanas to the right-hand side of tha model should 

have sums that tend toward zero as the numbers of sampling localities, 

samples per locality, and analyses per sample are increased. It is 

also required that these variables are uncorrelatad with each other, 

but this will be discussed la detail at a later time*

Hierarchical sampling models can contain any number of terms; tha 

number will depend on tha degree of detail sought regarding tha nature 

of the geochemical variation* Krumbein and Slack (1956), in a study of 

radioactivity in a shale bed in the Illinois basin, used 9 terms to 

represent seal as of variation ranging from basiowide to a few inches « 

Shaw (1961) used a similar hierarchical model to assess the variation 

associated with sampling (i.e., sampling the sample), sample preparation, 

and laboratory analysis.

The sampling model given in equation (4), however, is sufficient 

for many problems in geochemical exploration* It can be made more 

complex by tha addition of new terms if more detailed information is

desired about the sources of variation in the data, or it can be simpli 
fied if the degree of laboratory error is not of concern. In the latter 
case, the model vould be:

The term /3-- here is the difference between the value for the / +j.

sample from the -o£& locality and the mean for tha x<£4 locality CH 

Thus, ft- represents the error due to both tha selection of the sample
Q

and the laboratory analysis (the sum o*/3^, and e^ijL *** aquation 4),



5) Statistical properties of geochemical data.

a) Frequency distributions and data transformations

Frequency distributions are described by histograms or by 

distribution curves (also distribution functions or probability 

distribution functions). Histograms are formed by plotting the 

frequency of occurrence,/^), against a range of/C (see fig. 1). 

As the number of occurrences increases and the range of JL decreases, 

the form of the histogram moves toward that of the distribution curve. 

Because the number of occurrences that can be observed is always limited, 

we never know the form of the distribution for the population, and this 

has led to some controversy among geochemists. It is the form of the 

distribution of the population that is important, not the form displayed 

by the data on hand. Nevertheless, the data on hand provide our only 

clue to the nature of the population.

From the discussion of sampling models, it is apparent that each 

geochemical value is, or at least can be viewed as, the sum of a number 

of other variables. Accordingly, the frequency distribution of the 

values will be determined by the distributions of these individual 

variables. In other words, the form of the frequency distribution 

will be determined by the nature of the regional variation in the rock 

or soil unit, the nature of the local variation, and the nature of the 

laboratory errors. Moreover, if more than one rock or soil unit are 

sampled (or have influenced the samples -as in stream sediment sampling, 

for example), the differences among the units and their relative extents 

will also affect the nature of the observed frequency distribution.
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Investigations of this problem by means of computer simulation have 

been described by Govett, Goodfellow, Chapman, and Chork (1975). 

It is obvious that geochemical frequency distributions cannot be 

expected to have the exact form of any classical distribution. In 

order to use existing probability theory, some classical frequency 

distribution must be assumed. It is necessary to choose the classical 

distribution that best approximates the distribution displayed by the 

data. Many statistical methods are said to be robust that is, they 

are not highly sensitive to differences between the classical 

distribution assumed for the statistical analysis and the actual 

distribution of the population (See Kendall and Stuart, 196l, p. 465-9) 

Most statistical methods have been developed for the analysis of 

data from populations that are normally distributed. The normal 

distribution curve is defined by:

where y* and 0" are parameters of the distribution the mean and standard 

deviation, respectively. A particular normal distribution is specified 

by the notation: N(f<^\ distribution curves for 

and //(^<?./,2£5) ara shown in figure 2.
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Various statistical tests are available to determine the chances 

that an observed frequency distribution of data could have resulted 

from a population distribution that is normal  If the chances are 

found to be good, statistical theory based on the noraal distribution 

can be applied without such fear of arriving at erroneous results*

However, if it is found that the sample distribution departs 

markedly from the normal form, it may be advisable to transform the

data in some manner choosing a transformation that has a distribution 

closer to normal. The transformation most commonly used in geochemistry 

is the logarithm. If the logarithms of the geochemical values (the 

values in units of ppm or percent, for example) for the entire 

population are normally distributed, the population is lognormal. 

In most geochemical problems, the entire population is never observed, 

but if tests of the logarithms of the data fail to indicate 

statistically significant departures from the normal distribution, the 

population distribution is inferred to be lognormal. In practical 

situations, more often than not, these tests do indicate significant 

departures, and the inference of a lognormal population is commonly 

not possible. However, in almost all problems involving minor element 

distributions, the possibility of a normal population distribution can 

be rejected with much greater confidence than can the possibility of 

a lognormal distribution. Moreover, the logarithms of the data values

11



almost always display approximately symmetrical frequency distributions, 

whereas the frequency distributions of the original values are almost 

always highly asymmetrical. The symmetry of the log distributions 

renders the log data acceptable for treatment by a wide range of 

statistical tests based on normal distribution theory.

It may appear at the onset that we wish to study the geochemical 

data in units of ppm or percent and that transformation of the data 

to logarithms defeats this purpose. However, it should be noted that 

experienced field geochemists,wittingly or unwittingly, almost always 

interpret geochemical data in terms of logarithms even though they 

commonly do not actually transform the dat-a or use formal statistical 

methods. Geochemical values are almost always compared on a proportional 

basis; that is, the differences between 1 and 2 ppm, between 10 and 

20 ppm, and between 100 and 200 ppm are considered equally significant 

in both a statistical and geochemical sense*. If all of these geochemical 

values are transformed to logarithms (base 10),the difference for each 

pair is 0.30103 and, therefore, treatment of the log data by conventional 

statistical methods is in accord with the long-standing practice of 

most geochemists. Transformation of the data to logarithms allows 

one to examine proportional,rather than absolute, geochemical differences.

Another important reason for the log transformation is to avoid 

the strong relations between the means and variances that are almost 

always present in the original ppm or percent data. Such relations 

can invalidate analysis of variance methods (Gochran, 1947) that are 

almost necessary for rigorous analysis and interpretation of geochemical 

data,
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A final benefit of the log transformation is that variances 

and covariances estimated for log data are independent of the 

manner in which the original data are expressed. The log variance 

of titanium, for example, is the same whether the data are expressed 

as percent Ti, percent TiO*' Parts Per million Ti, or parts per 

million T1D2 .

The lognormal distribution curve is defined by (from Aitchison 

and Brown, 1957, p. 8):

where X and cr are, respectively, the mean and the standard deviation 

of the logarithms (base e). A particular lognormal (i.e., 2-parameter

Note; Throughout the syllabus,the notation "log" refers to logarithms 

to the base 10 and "In" specifies logarithms to the base e (2.71828). 

Conversions can be made according to log - 0.43429xln or In - 2.30259xlog.

The variance of log (V, ) and variance of In (V, ) are convertedlog7 In7

according to V_ - 0.18861xV. and V. - 5.3019XV. ft . log In In lOg

lognormal) distribution is specified by the notation: JL(A cry  

Distribution curves for ji.(3 O**ffj and A/faS'l .4/6.4) are shown inj * * *

figure 3. The arithmetic mean and standard deviation of the geochemical 

values from the lognormal population (curveVw) are precisely the same 

as the respective parameters of the normal population (curvet).

13



f(x)

 A(3, 0.49) N

Mode Md AM SD CV Sk

25.7 25.7 25.7 20.4 0.79 0

12.3 20.1 25.7 20.4 0.79 2.8*

40 50 120
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Distribution curves for.A-(3.7,0.49) and for N(51.7,1688.6) 

are shown in figure 4; as for the distributions represented in figure 3, 

the two populations have precisely the same mean and standard deviation 

when these parameters are expressed in terms of the original geochemical 

values.

Distribution curves for .A (3,0.1225) and N(21.4,59.4) are shown 

in figure 5. The arithmetic means for both populations are 21.4 and
(__M^M»

both standard deviations are 7.7(f59.4). The coefficient of variation 

(standard deviation/mean) for the distributions in figure 5 is 

considerably smaller than that for the distributions in figures 3 and 4, 

and the lognormal and normal curves are more closely similar. The 

asymmetry of a lognormal distribution curve increases with increasing 

coefficient of variation (compare fig. 5 with figs. 3 and 4).

Those who have constructed histograms of minor element data from 

geochemical investigations will recognize the lognormal distribution 

forms, particularly the long tails that extend toward the higher 

geochemical values (the values ofXO* If the frequency distributions 

of the original data values have lognormal forms, the distributions 

of the log values will be normal. The normal distributions correspond 

ing to the .A. distributions of figures 3, 4, and 5 were given in figure 2,

15



Fig, 4

f(x)

C V Sk

0.79 0

0.79 2.86

-40 40 120 160
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60r
A(3, 0.1225) 

N(21.4 / 59.4)

Mode Md

N 21.4 21.4

A 17.8 20.1

AM SD

21,4 7.7

21.4 7.7

CV Sk

0.36 0

0.36 1.13

17



The common method for determining whether a group of geochemical 

values could have been drawn from a normally distributed population 

is to test the frequency distribution of the logs of the values for 

conformance with the normal distribution* The first step in one of 

these tests (the chi-square test) is to construct a histogram of the 

log values* In most situations, the histogram of the log values will 

be far more symmetrical than that of the original geochemical values. 

In other situations, however, the frequency distribution of the log 

values will be seen to retain some degree of positive skewness or to 

display some negative skewness. When the log distributions are highly 

skewed, either positively or negatively, it may be desirable to use 

a three-parameter log transformation. This is done by adding a 

constant to each of the original geochemical values before the logs 

are taken. The constant should be negative if the log data are 

positively skewed or positive if the log data are negatively skewed. 

A particular three-parameter lognormal distribution is specified by 

the notation-A. (VtfjCry where f is the constant and x and <r are, 

respectively, the mean and variance of the logarithms of %+f where % 

is the geochemical value.
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b) Some properties of normal and lognormal distributions.

The characteristics of a lognormal distribution can be fully 

described in terms of the logarithms, and in this manner, the descript 

ions are as simple as those for a normal distribution. That is, the 

mode and median are both equal to X where X is the mean of the log 

arithms; the standard deviation is <T, the standard deviation of the 

logs; and the skewness and kurtosis (and 'all higher moments) are both 

zero. However, it is usually desirable to express these parameters 

in terms of the original geochemical values. The expressions in 

table 1 will be helpful for this purpose.

Population distributions are defined in terms of parameters; 

estimates of the parameters are called statistics.
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Table I. -Some parameters of the normal and lognormal distributions

Normal distribution Lognormal diatributlon

Definitions

fj m aumber of individuals 

la the population

?J   a geochemlcal value, 

generally,in units of 

ppm or percent.

/I-
fit

Mode!/

Median!/

Mean (geochemical abundance)!/

Standard deviation!/

Coefficient of variation!/

Skewnes*!/

Kurtosis!/

Geometric mean!/

Geometric deviation

Central (68 percent) range '

Expected (95 percent) range!/

O 

O

\f Expressions for the lognormal distribution are from Aitchlson and Brown (1957, p. £).

j2/ If the coefficient of variation exceeds 1.0, the lower limit of the central range for the normal

distribution will be negative. 

^/ If the coefficient of variation exceeds 0.5, the lower limit of the expected range for the

normal distribution will be negative.
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c) Measures of central tendency

The central value of a frequency distribution can be defined in 

various ways (e.g., mean, median, mode). Estimates of central values, 

or of central tendency, are made for two principal purposes in geochemistry: 

1) to estimate geochemical abundance (that is, the units of weight of 

a chemical constituent per 100 or 10° units of rock or soil), and 2) to 

estimate a typical concentration that can be used to characterize a 

geologic population. The first of these purposes calls for an estimate 

of the population arithmetic mean regardless of the form of the 

population frequency distribution. If the frequency distribution is 

normal, or at least symmetrical, the estimated arithmetic mean is also 

the best measure of the most typical concentration inasmuch as the 

mean, median, and mode are all the same for a normal distribution 

(table 1). However, if the distribution is asymmetrical, the arithmetic
 %

mean will not necessarily be a typical value. It is suggested that the 

typical value to be used for describing geochemical distributions be 

taken as the median that is, the value exceeded by exactly one-half 

of the values for the population. The best measure of the median for a 

lognormal distribution is the geometric mean (gm) which is estimated by:

(8) 

where ~X~ is the arithmetic mean of the logarithms (base e), or by

GH*/0% (9) 

where % is the arithmetic mean of the logs (base 10).
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The population median may also be estimated by the 50th percentile 

(PCQ), but this involves a graphical procedure and no method is 

available for estimating its reliability* However, if a transformation 

that renders the population frequency distribution symmetrical cannot 

be found, the 50th percentile may be the only safe measure of the 

population median. In fact, percentile (order) statistics are always 

safe and appropriate as descriptive statistics regardless of the form 

of the distribution.
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d) Measures of geochemical abundance and average grade.

The geochemical abundance of a chemical constituent is the units 

of weight of the constituent per 100 or 10 weight units of the rock 

or soil unit, depending on whether abundance is expressed as percent 

or parts per million, and is equivalent to average grade in ore 

evaluation. Estimates of geochemical abundance are generally not 

important in geochemical exploration until after an ore deposit has 

been located. They are necessary then in order to judge the pounds 

or tons of the constituent that can be recovered by mining and milling 

a given mass of ore. Such estimates may also be necessary in 

investigations of environmental pollution in order to judge the amount 

of the constituent that has been released to the environment, and in 

studies of geochemical balance among various components of a geochemical 

system.

The geochemical abundance of a constituent in a population is 

equal to the population arithmetic mean. The arithmetic mean is at 

the point on the abscissa of the distribution curve that divides the 

area under.the curve into two equal parts. The only difficulty here 

is in choosing the best method for estimating the population arithmetic 

mean.
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If the population frequency distribution is symmetrical and if 

the samples have been collected either at random locations throughout 

the rock or soil unit or at equal intervals or in equal clusters that 

occur at equal intervals, an unbiased and efficient estimate, % t of 

the population arithmetic mean,X, can be obtained from:

^* "~5T~ (10)

where £ is a geochemical value and 1 is the number of values. If * 

is large, equation (10) is appropriate regardless of the form of the 

frequency distribution.

The sampling requirements for the use of equation (10) are rarely 

met in problems of ore evaluation, however, because samples are almost 

never available at randomly selected or equal intervals throughout a 

deposit. Most commonly, the samples are taken from drill cores that 

are unequally spaced over the deposit. This has led to the development 

of a variety of methods for computing weighted averages, in general,

according to:
Z u// I/

where u£ is a weighting factor that varies in proportion to the mass 

of ore thought to be represented by the L&L geochemical value, 2^. 

The most common methods for determining appropriate values for 44* are 

the polygon and triangle methods (see Hazen, 1958).
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The theory of regionalized variables (geostatistics) developed by 

G. Matheron and his associates over the past 15 years, largely in 

France and in Montreal, Quebec, offers an alternative and highly 

sophisticated means for determining the weighting factors for equation (11)  

The determined weights will depend on the degree of continuity in the 

ore deposit and on the spatial properties of the continuity. The 

theory also provides methods for estimating the reliability of the 

grade estimates as well as means for determination of total size and 

value. The weight factors are determined by what are called kriging 

procedures* The methods are distribution-free in the ordinary 

statistical sense; however, they involve fitting another kind of model 

to a variogram rather than to a sample frequency distribution* Some 

of the same difficulties and arguments are encountered in the selection 

of this model as are encountered in the selection of frequency 

distribution models when using classical methods of statistics. The 

primary purpose of geostatistical methods is to overcome the difficulties 

caused by the fact that samples from ore deposits are rarely independent 

in the sense required for clasical methods of statistical estimation. 

Some excellent discussions of geostatistical concepts and methods, in 

English, are given by Blais and Carlier (1968), David (1969, 1970), 

Matheron (1963), Olea (1972), Davis (1973), and Agterberg (1974).
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In situations where n is small and the weighting of geochemical 

values is unnecessary, but where the population frequency distribution 

is believed to be lognormal rather than symmetrical, the arithmetic 

mean is best estimated by the _t-estimator of Sichel (1952, 1966). 

The t-estimator is given by:

where GM is the geometric mean (eqa. 8 or 9) and J(n(V) is a factor 

that varies with the number of values, n, used to estimate GM and the 

variance of the logarithms (base e) of the values (V). Part of a 

table of J(n(V) from Sichel (1966) is given here as table 2, and graphs 

are given in figure 6 which can be used to determine ftn(V) from the 

geometric deviation, GD. (See equation 16 in the following section 

of this syllabus.) The advantage of the ^-estimator over the ordinary 

estimate of the arithmetic mean (eq. 10) is that it is more efficient. 

That is, repeated independent determinations of £ in a given problem 

will vary less than repeated independent determinations of 3C. Link 

and Koch (1975) have pointed out that the ^-estimator can be biased 

if the population frequency distribution is not truly lognormal, but 

the bias is small in many situations and can be less detrimental than 

the inefficiency of the ordinary arithmetic mean if the distribution 

is highly asymmetrical.
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Pig. 6

Vn(v)

123456 7

Geometric deviation, GD

From Missch (I967b). Constructed from tables 
of Sichel (1952)
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e) Measures of variability*

The most obvious measure of variability among geochemical values 

is the range  the difference between the highest and lowest values  

or the proportional range  the highest value divided by the lowest 

value. These measures, however, are unstable in that they can be 

expected to vary widely with the addition of new data* Other well- 

known measures that are somewhat better in this regard are the 

percent lies --the order statistics* Variability can be expressed by 

specifying, for example, the 5th and 95th percentiles (P- and P ) or 

the 10th and 90th percentiles (P and P ) . The central and expected

ranges as defined in table 1 can be approximated by specifying P and
16

and PA , or P_ and P , respectively* The percent ile measures are 
84 2.5 97.5

valid and appropriate regardless of the form of the sample or population 

frequency distributions. The disadvantage in using them, however, is 

that they are estimated only by graphical procedures and they provide 

no means for further mathematical analysis of the sources of the 

variability in the data.

The most commonly used measure of variability is the variance or 

its square root, the standard deviation. The variance, as defined for 

the population in table 1, is estimated by:

*
SL-1

where ̂  is a geochemical value and y. is the mean of the n values.
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On comparison of equation (13) with the equation that defines 

the population variance (table 1), it will be noted that the 

denominator is n - 1 rather than n« The quantity n is the number of 

independent values of x. from which the variance is estimated, but 

n - 1 is the number of degrees of freedom available. This appears 

reasonable when we consider the fact that if n « 1, zero degrees of 

freedom are available,and the variance could not be estimated* If 

the equation for the variance in table 1 were used to estimate the 

population variance from small sets of data (i.e., where n is small), 

the estimates would be biased, whereas estimates from equation (13) 

are unbiased.

For purposes of illustration, suppose that the entire population 

consisted of three individuals--the values of 8, 6, and 4. The 

population variance according to the definition in table 1 is 2.6667. 

From a population of three individuals, it is possible to draw nine 

different samples of two individuals each. These samples, and the 

variances estimated from them by the two different methods are as follows;

Estimate d variance
Sample

1
2
3
4
5
6
7
8
9

Values

8 and 3
8 and 6
8 and 4
6 and 8
6 and 6
6 and 4
4 and 8
4 and 6
4 and 4

Table 1

0
1
4
1
0
1
4
1
0

.... 1.3333

Equation (13)

0
2
8
2
0
2
3
2
0

2.6667

The average estimate from equation (13) is exact, whereas that from the 

equation in table 1 is obviously wrong.
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The estimated central range of a normal distribution is from:

and the estimated expected range is from:

to (15)

The estimated central range is the range in which about 68 percent 

of the population is estimated to occur. The expected range is the 

range estimated to contain about 95 percent of the population of values. 

Some investigators regard values outside of the expected range as 

geochemically anomalous (Ebens and others, 1973, p. 7).

If the population frequency distribution is assumed to be lognormal, 
the variance of the logarithms is estimated with equation (13)* 
where % is taken as the logarithm of the geochemical value (base e or

base 10) and >: is the mean of the logs. In this case, the limits of 

the central and expected ranges are taken as the antilogs of the 

expressions in (14) and (15). It is more convenient, however, to 

estimate the geometric deviation fjd) according to either:

«ttX f ̂  ̂  \( jD ~ ^XP(^L) or GD   /O Qlo/ 

depending on whether the variance was computed for logs to the base e 

or base 10. The central range, then, is estimated by:

(Grt/ejb} to (GMxGD) (17)

and the expected range by:

_ . * A .*

(18)

(Note: the value 1.96 is almost always replaced by 2 in actual 

applications.)
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The lower limits of central and expected ranges for geochemical 

populations, as estimated from lognormal theory, are always greater 

than zero, no matter how low the mean or how great the variance* 

The lower limits estimated from normal theory, however, are commonly 

negative and, therefore, entirely unrealistic*

The most important property of the variance is that of additivity. 

The variance of the sum of two or more independent variables is equal 

to the sum of their variances. Because of this property, it is possible 

to partition the total variance of a geochemical variable among various 

sources that contributed to the total variation. It is thereby 

possible to assess the relative importance of both geologic factors 

and various laboratory procedures as they have affected the observed 

data*
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£) Variance of a mean and confidence intervals*

A statistical estimate of the mean or of any other parameter of 

a geo chemical population is based on an experiment  the experiment 

consisting of field sampling and laboratory analysis according to some 

plan* If the experiment is repeated over and over again according to 

the same plan, a number of different estimates will be obtained. The 

frequency distribution of these estimates is the sample distribution 

of the statistic, and the variance of the sample distribution, or of 

the statistic, is ah inverse measure of the precision or efficiency 

of the statistic* Fortunately, the variance of the statistic can be 

predicted from the results of the first experiment  without repeating 

the experiment a large number of times.

The variance of an estimated arithmetic mean is given by:

%
2.

where A- is the estimated variance of the individual geo chemical values

(eq* 13) , and /I is the number of independent values that were used in
2. 

the calculation o
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The need for /I to represent the number of independent values used
2,

in the calculation of A* cannot be overemphasized* If any of the
2. 

values are related in some manner, the variance, (T , could be

seriously underestimated* Say, for example, that the /lvalues were 

actually collected from /l^ randomly selected sampling localities, 

with Ag values selected at random from within each locality (so that 

l^g'Td)* rather than from /I points selected at random from throughout 

the region of investigation. The sampling, then, would be in accordance 

with the model of equation (5) . Rather than having /I independent 

values, we would have /1^ independent means for the /l^ localities. 

Each of the means would have a variance equal to the variance within
2.

localities,^, divided by/?j. ^

±1
nfi (20)

If an estimate of the variance among the true locality means is denoted
2.
(a variance "component"), the variance among the /?. estimated means

is given by: -z.
?* -^* 

JL. +  _/±
* n^ (21)

The variance of the grand mean of all n values, or of the mean of the

/i^ means, is: ^ £
-4. ,  #  "Z   
* nft

"«.

or, more simply:

(23)
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The same arguments used in moving from equation (19) to equation (23) 

can be employed in deriving estimating equations for situations where 

the sampling design contained additional hierarchical levels and the 

model contained other terms in addition to oCand/3. Just as equation (19) 

requires that fl represents the number of independent values used to
7.

calculated, equation (23) requires that /t^represent the number of
X.

independent means used to calculate -4- and /t^represent the number of
z. 

independent values within each sampling locality used to calculate -4/ .
»  z.

The manner in which WL and >t, are calculated is discussed in laterct. ft

sections of the syllabus on analysis of variance procedures.
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Some sampling designs, as will be discussed later in the syllabus, 

involve sampling from populations of limited size. For example, at 

some level of the design we may subdivide a square or rectangular area 

into, say, four equal -sized quadrangles and then select two of the 

quadrangles at random for sampling. In this situation, the population 

consists of only 4 items, and we would have sampled one-half of the 

population. Equations for estimating variances of means, as given in 

equations (19) and (23) apply only where the fractions of the populations 

that were sampled are small « If this sampling fraction is large, 

correction terms must be applied (Cochran, 1963, p. 286). Equation (23) 

with the correction terms would be:

ft /on \< 23a>

where f^ is the fraction of the sampling localities that were sampled 

and £3 is the fraction of the total number of potential samples in each 

locality that were actually collected and analyzed. If all possible 

sampling localities were sampled, "f^ is equal to 1 and if, as is usually 

true, only a very small proportion of the potential samples in each 

locality were collected, ,* is very near zero. In this situation, 

equation (23 a) reduces to equation (19) .
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Confidence limits about an estimated mean,*?!, are given by:* * *«*»
where 5^ is Student's £, and is required because the variances used 

in equations (19) to (23) are only estimates of the true variances. 

The values of ^ are read from a table of t such as that given in 

table 3} the table is entered with 0C(the probability that the error 

in the estimated mean exceeds the error indicated by lL-4^ anc* v*(the 

degrees of freedom available for estimating A*J) , If As has been 

derived through expressions as given in equation (23), the number of 

degrees of freedom, r" , is less than straightforward. However, Cochran 

(1963, p. 12) has pointed out, in effect, that if V is greater than 

about 60, f may be taken as infinity (See table 3) without serious 

error* We shall be even more liberal and take 1* as infinity if it 

is actually 10 or more. (If «. is set at Q.05,2^ -2.23 f or V» 10.

0.of~2.00 for r"» 60, and^ -1.96 f or r» infinity.) 

estimated from an equation similar to equation (23), the number of 

degrees of freedom is more than 1.-/ , but less than *4 l\'~t* Our 

liberal rule allows us to take V as infinity if we have 11 or more 

master sampling localities. Krumbein and Slack (1956) suggested ten 

as a minimum.
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Table 3-   PERCENTAGE POINTS OF THE f-DisnuBunoN*

X
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
13
19

20
21
22
23
24

25
26
27
28
29

0.50

l.OOOCO
0.81650
0.76489
0.74070

0.72669
0.71756
0.71114
0.70639
0.70272

0.69981
0.69745
0.69548
0.69384
0.69242

0.59120
0.69013
0.68919
0.63837
0.68763

0.68696
0.68635
0.68580
0.68531
0.63485

0.68443
0.68405
0.68370
0.68335
0.68304t

30
40
60
120
00

0.68276
0.68066
0.67862
0.67656
0.67449

0.25

2.4142
1.6036
1.4226
1.3444

1.3009

0.10

6.3138
2.9200
2.3534
2.1318

2.0150
1.2733 j 1.9432
1.25^3
1.2403
1.2297

1.2213
1.2145
1.2089
1.2C41
1.2001

1.1967
1.1937
1.1910
1.1387
1.1866

1.1848
1.1831
1.1816
1.3302
1.1789

1.1777
1.1766
1.1757
1.1748

1.S946
1.3595
1.3331

1.3125
1.7959
1.7323
1. TN39
1.7613

1.7530
1.7459
1.7396
1.7341
1.7291

1.7247
1.7207
1.7171
1.7139
1.7109

1.7081
1.7056
K7033
1.7011

1.1739 1.6991

1.1731
1.1673
1.1616
1.1559
1.1503

1.6973
1.6839
1.6707
1.6577
1.6449

0.05

12.706
4.3027
3.1825
2.7764

2.5706
2.4469
2.3646
2.3C60
2.2622

2.2281
2.2010
2.1788
2.1604
2.1448

2.1315
2.1199
2.1098
2.1C09
2.0930

2.0860
2.0796
2.0739
2.0687
2.0639

2.0595
2.0555
2.0518
2.0484
2.0452

2.0^23
2.021 1
2.CC03
1.9799
1.9600

0.025

25.452
6.2053
4.1765
3.4954

0.01

63.657
9.9248
5.8409
4.6041

3.1634 4.0321
2.9687
2.3412
2.7515
2.6850

2.6338
2.5931
2.5600
2.5326
2.5096

2.4899*
2.4729
2.4581
2.^450
2.4334

2.4231
2.4138
2.4055
2.3979
2.3910

2.3846
2.3788
2.3734
2.3685
2.3638

2.3596
2.32S9
2.2991
2.2699
2.2414

3.7074
3.4995
3.3554
3.2498

3.1693
3.1058
3.0545
3.0123
2.9768

2.9467
2.9208
2.3982
2.3784
2.8609

2.8453
2.8314
2.8138
2.8073
2.7969

2.7874
2.7787
2.7707
2.7633
2.7564

2.7500
2.7045
2.6603
2.6174
2.5758

0.005

127.32
14.089
7.4533
5.5976

4.7733
4.3168
4.0293
3.8325
3.6897

3.5814
3.4966
3.4284
3.3725
3.3257

3.2860
3.2520
3.2225
3.1966
3.1737

3.1534
3.1352
3.1188
3.1040
3.0905

3.0782
3.0669
3.0565
3.0469
3.0380

3.0298
2.9712
2.9146
2.3599
2.8070

* Computed by Maxine Mcrrington from "Tables of Percentage Points of the 
Incomplete Beta Function," 3iomftrika, 32 (1941), pp. 168-181, by Catherine M. 
Thompson, and reproduced by permission of Professor E. S. Pearson.

From Bennett and Franklin (1951*, p. 696)
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The 95 percent confidence limits (et « 0*05) for an estimated 

arithmetic mean,^, are given by the range:

_') to (TL + tfLA- . (24)

If "X- and xA- were computed from the logs of the geochemical values, 

the 95 percent confidence limits are given by the antilogs of the 

limits in (24). Alternatively, we may set:

4& * exj>(*-£ er G^*/*** (25)

depending on the base of the logarithms, and give the 95 percent range 

of confidence as:

where <%M. is the geometric mean. As mentioned previously, the value /. 

in practice, is almost always taken as equal to <£.

A method, and tables, for estimating confidence intervals about 

geochemical abundances derived by means of Sichel's ^"-estimator are 

given by Sichel (1966).
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g) Means and variances from censored sample distributions.

The terms censored and truncated as applied to frequency distributions 

of geochemical data are commonly confused. In statistical terminology, 

a distribution is censored when values below a certain limit or above 

a certain limit can be counted but not measured. The sample distribution 

is left- or right-censored, respectively. This situation is very commonly 

encountered in geochemistry when the population distribution overlaps 

the chemist's lower or upper limits of analytical determination* 

Truncated sample distributions, on the other hand, occur when values 

of the population can be neither counted nor measured. One example of 

this might be in measuring the diameters of mineral grains; grains with 

very small diameters may be neither seen nor measured, and an unknown 

proportion of the frequency distribution is, therefore, missing. 

Truncated sample distributions such as this are not ordinarily encountered 

in field geochemistry.

Geochemists are commonly negligent in describing the manner in 

which they handle the censored distribution problem in statistical 

treatment of their data. In fact, they commonly do not even report 

the fact that the data were censored at all a This failure is not 

exactly fair to the reader who may wish to judge the validity of the 

statistical analysis. A useful device for reporting the degree of 

censoring in a sample distribution is the detection ratio. The 

detection ratio has the general form a:b, where £ 'is the number of 

geochemical samples in which the chemical constituent was measured by 

the analyst and J3 is the total number of samples that were analyzed.
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If the detection ratio is close to unity, the estimated mean 

and variance are not highly sensitive to the method of estimation. 

Where the detection ratio is smaller, however, this will not be true. 

If the sample distribution is left-censored, analytical reports of 

"less than %o" specify geochemical values somewhere between zero and 

-X , where % is the lower limit of analytical determination. If the 

distribution is right-censored, analytical reports of "greater than 

%0" specify values somewhere between JCQ and either 100 percent or 

10 ppm, where %0 in this case is the upper limit of analytical 

determination. A common practice among field geochemists has been to 

assign "less than" reports a value of either zero percent or ppm or 

some arbitrary value immediately below the lower limit of analytical 

determination. Reports of "greater than" are less common, but are 

generally assigned some arbitrary value immediately above the upper 

limit of analytical determination. Justification for the assignment 

of arbitrary values to reports of "less than" and "greater than" exists 

only where the detection ratio is near unity and the computational 

results are almost independent of any reasonable arbitrary value that 

may be chosen. Arbitrary assignments are necessary when the data are 

to be analyzed by analysis of variance methods or by almost any 

multivariate statistical procedure. They are not necessary, however, 

for the estimation of means and variances.
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Methods given by Cohen (1959, 1961) can be used to estimate the 

population mean and variance from a censored sample distribution. 

The estimating equations are:

% * %' -A^'-TO (27) 

and

2 = 6aO* * <W - -*>$* (28)

where 2-' and (4.' are the mean and variance of the rt! values that

are uncensored (that is, analytical reports other than "less than" 

or "greater than"). Equations (27) and (28) are valid for singly- 

censored sample distributions only; they cannot be used where the 

distribution is both left- and right -censored. The factor "^" is 

read from tables (see Cohen, 1959, 1961) or from graphs (fig* 7) and 

varies with the degree of censoring and with the quantity:

%f t f (29)
The degree of censoring is given by A. s /)//l where n is the number 

of analytical reports of "less than" or "greater than" and /I is the 

total number of samples analyzed. The quantity A. is also equal to 

one minus the detection ratio.
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Fig- 7

o.i

<s'r/cr-Vo>

From Cohen (1959)- Reproduced, with permission, in Miesch (l96?b).
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The method of Gohen is strictly valid only where the population 

frequency distribution of X is normally distributed, but has been 

found to be satisfactory wherever the sample distribution is approxi 

mately symmetrical. If the sample distribution is highly asymmetrical, 

as are the highly positively-skewed distributions commonly encountered 

in geochemistry, the use of Cohen's method may require a transformation 

of the data beforehand such as transformation to logarithms. Equations 

(27) and (28) can then be used to estimate the mean logarithm and the 

variance of the logarithms. The antilog of the mean logarithm will 

then give the geometric mean £dj/fyand the antilog of the square root 

of the variance of the logarithms will give the geometric deviation 

With these values, the method of Sichel, described previously, can be 

used to obtain an estimate of the arithmetic mean (geochemical abundance), 

if needed.

Figure SA shows the sample distribution of uranium values (ppm) 

for a granite body sampled by Hubaux and Smiriga-Snoeck (1964). The 

distribution is positively skewed as is typical for sample distributions 

of minor element values. The frequency distribution of the logs (base 10) 

of the values is shown in figure 8B and is considerably more symmetrical. 

The arithmetic mean and standard deviation (eqs. 10 and 13), estimated 

from the entire sample distribution ( ^3/^5) in figure SA were found 

to be 4.53 ppm and 2.15 ppm, respectively. The distribution was
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artificially censored at % » 2.6 ppra and "JL » 4.0 ppm, and Cohen'sd ^

method was used to estimate the population mean and standard deviation 

from the sample values greater than %0only. The complete results 

were as follows:

y, Detection Estimated Estimated
..____ ratio mean std. dev.

None 185:185 4.53 ppm 2.15 ppm
2.6 ppm 162:185 4.89 2.04
4.0 105:185 5.78 2.03

A similar experiment was carried out after transforming all data to 

logarithms (base 10). The results were as follows:

Detection Estimated Estimated Estimated Estimated Estima
I ^ ratio mean log std. dev. Gff4> '   &i& arithmi 

Xd /«5 Pa of logs mean

None
2.6 ppm
4.0
5.1

   «

0.415
.602
.708

185:185
162: 185
105: 185
50: 185

0.612
.621
.620
.571

0.199
.181
.181
.220

4.1 ppm
4.2
4.2
3.7

1.58
1.52
1.52
1.66

4.54 ]
4.55
4.54
4.24

Other examples are given in Miesch (1967b). The example above shows 

1) that Cohen's method was reasonably successful in estimating the means 

and standard deviations from sample distributions censored by as much 

as 73 percent, and 2) the method gave better results after the data had 

been transformed to logarithms so that the central part of the sample 

distribution was more symmetrical than that of the original ppm values.
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h) Measures of skewness and kurtosis*

The skewness and kurtosis of a frequency distribution curve are, 

respectively, measures of the asymmetry and peakedness of the curve 

and have been of interest to sedimentary petrologists for many years. 

Measures of skewness and kurtosis are made in various ways, including 

both mathematical and graphical procedures. All of the conventional 

methods for measuring skewness yield a value of zero for a distribution 

that is symmetrical about its mean value, a positive value for a 

distribution that has a tail extended towards the higher values, and 

a negative value for a distribution with a tail extended towards the 

lower values. Some commonly used methods for measuring kurtosis yield 

a value greater than three for a distribution that is more peaked than 

a normal distribution curve and a value less than three for a 

distribution that is less peaked. The preferred methods for measuring 

skewness and kurtosis are based on the /^-statistics of R. A. Fisher

(See Bennett and Franklin, 1954, p. 81). The first two ^-statistics

  2. 
are the arithmetic mean and the variance (equivalent to % and ,4, of

eqs. 10 and 13, respectively). The third and fourths-statistics are: 

/7*53

3

where /\ is the number of values and

47



The third and fourth ̂ -statistics, like the variance, have the 

property of additivity. That is, 4$ and &a for the sum of two or 

more independent variables are equal to the sums of k. and k.^ for 

the individual variables.

The measure of skewness («( ) is given by:

3, ' *3 ̂

where -4* is the cube of the standard deviation (eq. 13). The

kurtosis (a^) is measured by:

and is equal to zero for a normal distribution curve, to a positive 

value for a distribution more peaked than the normal curve, and to a 

negative value for a distribution less peaked than the normal curve* 

The maximum absolute values of * t and the limits for <j t to be expected 

95 and 99 percent of the time if the population distribution is truly 

normal are given in table 4 from R. C. Geary and E. S. Pear son (See 

Bennett and Franklin, 1954, p. 95).
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TABLE 4 5% AND I % POINTS FOR gl AND

Size of 
Sample

50
75

100
125
150
175
200

250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

*

Lower and Upper

5%

0.550
0.454
0.395
0.354
0.324
0.301
0.282

0.253
0.231
0.214
0.201
0.189
0.180
0.171
0.163
0.157
0.151
0.146
0.142
0.138
0.134
0.130
0.127

1%

0.812
0.664
0.576
0.514
0.469
0.434
0.406

0.362
0.331
0.306
0.286
0.270
0.256
0.244
0.234
0.225
0.215
0.208
0.202
0.196
0.190
0.185
0.180

A

Lower

1%

_
 

-0.80
-0.74
-0.69
-0.66
-0.62

-0.57
-0.53
-0.49
-0.48
-0.44
-0.42
-0.41
-0.39
-0.38
-0.37
-0.35
-0.34
-0.33
-0.33
-0.32
-0.31

3X

  

-0.62
-0.57
-0.53
-0.50
-0.47

-0.44
-0.40
-0.37
-0.35
-0.33
-0.32
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.25
-0.24
-0.23
-0.23

Upper

5%

_
0.87
0.78
0.71
0.66
0.62

0.55
0.50
0.47
0.43
0.40
0.38
0.37
0.35
0.35
0.32
0.31
0.30
0.29
0.29
0.28
0.27

1%

_
1.53
1.34
1.22
1.11
1.04

0.91
0.82
0.75
0.69
0.65
0.62
0.59
0.55
0.53
0.51
0.49
0.47
0.46
0.44
0.43
0.42

*From Bennett and Franklin (195^* P« 95)

49



i) Measures of correlation among variables.

Measures of correlation among geochemical variables are frequently 

needed for interpretations of geochemical coherence (Rankama and 

Sahama, 1950, p. 48) and geochemical behavior* An understanding of 

correlation is also a necessary prerequisite to discussions of 

geochemical errors that follow in later parts of this syllabus.. The 

most common measure of correlation is the simple linear correlation 

coefficient* The population correlation coefficient, /^ ., is estimated 

by:

(30)

 

where -^^v is the estimated correlation for variables x- and /*, .xi^and

*'L are the estimated standard deviations of variables -*- and / (eq. 13) , 
<T a
and -*fc-' is the estimated co variance from:

(3D

where "X^and %-\ are the means of the %^ and "%\ variables and /I is the

number of pairs of variables. The value of ./*-,;  is +1.0 where the
4"

plotted points fall on a straight line with positive slope, -1.0 

if the slope is negative, and zero if the plotted points show no 

linear relation whatsoever.

50



The statistical significance of an estimated simple linear 

correlation coefficient may be determined from standard tables if 

the bivariate frequency distribution is at least approximately normal. 

This condition is commonly not present for geochemical data as percent 

or ppm values. In many situations, the logarithms of the geochemical 

values as plotted on an x-y graph do appear to follow the bivariate 

normal form. Thus, it is commonly possible to determine the statis 

tical significance of a correlation among the log values but not of 

the correlation among the original geochemical values. Another reason 

for estimating correlations for log values is that correlations among 

the original values are commonly obscure and governed almost entirely 

by the upper parts of the bivariate distribution. Both of these 

points are illustrated in figure 9. The correlation between the ppm 

values (fig. 9A) is determined almost entirely by the six pairs of 

higher values; the relationship among the four pairs of lower values 

has little influence on the estimated correlation. The correlation 

between the log ppm values (fig. 9B), however, is affected by the 

lower four pairs of values about as much as it is affected by the 

other six pairs. Also, the total relationship between the variables 

is somewhat more clear when observed by way of logarithms. In 

addition, the bivariate distribution of the logs is at least con 

ceivably the result of a bivariate normal population, whereas that 

of the ppm values is not. The correlation between the logs could 

be tested for statistical significance.
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Censored values occur in almost all geochemical data sets and, 

if correlations are to be estimated, a decision must be made regarding 

the treatment of the "less than" and "greater than" values. If the 

correlations are to be estimated for the ppm values, the "less than" 

values can usually be treated as zeros without serious bias. The 

correlation for the bivariate distribution in figure 9A-, for example, 

would be essentially the same if points representing less than 20 ppm . 

of constituent "a" and less than 800 ppm of constituent "b" were all 

moved to the point 0,0. If the correlation is to be computed for the 

logarithmic data, however, and if a matrix: of log correlations is to 

be studied by means of R-mode factor analysis, there is probably little 

one can do other than treat all "less than" values as some arbitrary 

value immediately below the lower limit of analytical determination 

for the respective constituent. (Some workers conventionally treat 

"less than" values as seven-tenths of the lower analytical limit.) 

This will probably not bias the results a great deal if the detection 

ratios for the two constituents are both high (say, 0.8 or higher). 

However, if factor analysis is not intended, the correlation can be 

estimated from the upper part of the bivariate distribution only. 

This is illustrated in figure 10 where the estimated correlation for 

all pairs is 0.940. If the correlation is estimated from only the

points aboveX(a) and %(b), it is 0.926, and if estimated from only
o 0

the points to the right of % (a), it is 0.907. Correlations estimated 

from the upper parts of censored bivariate distributions have unknown
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frequency distributions and cannot be tested for statistical 

significance; they should be regarded only as indices of geochemical 

correlation or geochemical coherence. Matrices of such correlations 

do not have the Grand.an properties required for factor analysis; that 

is, the derived principal components matrices cannot be used to 

reproduce the original correlation matrix,

Chayes (I960, 1962) has shown that correlations among compositional 

variables do not necessarily reflect genetic relations because such 

variables sum to a value that is constant for all observations (samples) 

While the sum of the logarithms of the variables is not constant 

among observations, Chayes' argument still holds in principle, although 

not in mathematical detail. Extreme caution must be exercised in the 

interpretation of correlations among compositional variables, or their 

logs, in terms of geologic or geochemical processes. A test of the
-  %

statistical significance of correlations among compositional variables, 

proposed by Chayes and Kruskal (1966), has been judged invalid (Miesch, 

1969), Genetic associations might be examined more effectively by 

estimating correlations among the ratios of each constituent to some 

reference constituent, such as SiO , but this by no means completely 

avoids the problems pointed out by Chayes (Miesch and others, 1966).

55



II. Nature and effects of geochemical errors,

1) Definition and classification of errors

The importance of considering the nature of the errors in geochemical 

data is apparent when we consider the fact that the presence of error 

is the only reason that statistical procedures are used in the analysis 

and interpretation of the data. Each geochemical value is intended to 

represent the concentration of a given chemical constituent in some 

volume of material larger than the sample itself. It would be only a 

coincidence if the value were perfectly correct. First, the laboratory 

analysis of the sample is always wrong by at least some small increment, 

and second, the sample is never perfectly representative of the sampling 

locality from which it was taken. Each data value, therefore, contains 

both an analytical error and a sampling error. If neither of these 

types of error were present, there would be no need for statistical 

analysis.

Analytical error will be defined as the difference between the 

concentration reported by the analyst and the true concentration in 

the sample submitted to him for analysis. Sampling error will be 

defined as the difference between the true concentration in a sample, 

or the average true concentration for a group of samples, and the 

_true concentration in the volume of material that the samples, or 

group of samples, is intended to represent.
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It will be obvious from this definition of sampling error that 

the errors in sampling arise partly from the nature of the rock or 

soil unit being sampled. If the unit were perfectly homogeneous in 

composition, no sampling error would occur no matter what sampling 

procedure was used. If, on the other hand, the unit were highly 

variable in composition, large sampling errors may be difficult 

to avoid and would be present through no fault of the sampler whatsoever. 

If the samples are intended to represent a sampling locality, much will 

depend on how the locality was defined. In other words, the degree of 

sampling error may depend partly on the ambitions of the sampler; a 

sample from a hillside may contain little sampling error if the sample 

is intended to represent only the hillside, but may contain larger 

error if intended to represent the entire mountain, depending on the 

nature of the variation within the mountain. Regardless of the 

magnitude of the errors due to either analysis or sampling, laboratory 

and sampling procedures should be conducted in such a way that the 

errors are susceptible to analysis by statistical methods. Certain 

properties of errors can invalidate certain statistical procedures. 

They can also invalidate non-statistical procedures as well.

Two of the fundamental properties of errors are bias and imprecision. 

Bias and imprecision are functions of the average of the errors and 

their variability, respectively. If the average error is zero, the 

method that led to the errors is unbiased. If all of the errors are 

identical, the method is perfectly precise. A geochemical value is 

unbiased if it was produced by an unbiased method. A value is precise

if it was produced by a precise method. Bias and imprecision are 
completely independent properties. A method can be biased and imprecise, 
biased but precise, unbiased but imprecise, or unbiased and precise.
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Bias can arise in the laboratory if the analytical procedure is 

inherently incorrect, if the sample material becomes contaminated 

in some way, or if the aliqout taken for analysis from the sample 

submitted by the geologist is not representative. Bias can occur 

in field sampling where the population available for sampling differs 

from the target population, or where the available population is not 

sampled by some objective procedure.

Some degree of imprecision is associated with all laboratory 

procedures, but is commonly appreciable where the procedures are of 

the rapid and low-cost variety generally used in geochemical surveys. 

Imprecision in field sampling is appreciable when the sampling localities 

to be represented by the samples are highly variable in composition, 

but it can always be reduced by increasing the number of samples from
V"

each locality.

2) Effects of errors

Although some degree of imprecision is to be expected in all 

measurement data, including geochemical values, variable precision 

can lead to difficulties in statistical analysis. For example, the 

degree of analytical precision can vary from one specimen to another, 

and commonly does, because analytical imprecision increases directly 

with increasing amounts of the constituent in the sample. The 

imprecision among sampling errors can vary from one sampling locality to 

another because of different degrees of variability within localities. 

In most situations, the variability within localities is related 

directly to the locality means.
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The relationship of imprecision in sampling and(or) analysis to 

mean concentration is illustrated in figure 11A wherein the mean

and variance of ?-0 are plotted for ten sampling localities. The

are for sandstones of Cambrian age. The ten localities are 

distributed over most of the western U.S.; 32 samples were selected 

from each locality by procedures that involved formal randomization 

(data from A. T. Miesch and J. J. Connor, unpublished). The plot in 

figure 11 shows not only that the variance is greatly different from 

one locality to the next, but that the variances are at least 

approximately proportional to the means. If analysis of variance 

procedures (including the popular J: test) were to be used to judge 

the significance of differences among the locality means, it would be 

necessary to assume that the population variances within localities 

were all at least approximately equal. Figure 11A gives the strong 

impression that the assumption would be grossly invalid for these 

data. For situations wherein the mean and variance appear to be 

related, Bartlett (1947) has recommended the logarithmic transformation 

before proceeding to analysis of variance methods. Log (base 10) 

transformation of the ?2°5 data leacis to the relation shown in figure 11B, 

The means and variances of the log data show no apparent correlation, 

and the variances for the ten localities are a great deal more similar 

than were the variances for the original percentage data. Analysis of 

variance procedures could be applied to the log data without much 

concern for the effects of inhomogeneous variance.
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Fig. 11
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Bias in sampling and analysis as well as imprecision can be 

variable from one sample to another or from one sampling locality 

to another, but the effects are a great deal more severe and almost 

impossible to correct prior to analysis of variance or any other 

statistical treatment* Variable bias can occur in the laboratory when 

different analytical methods with different biases are used or when 

different analysts cause different biases throughout the analytical 

program* Variable bias can occur in field sampling when localities 

are sampled by different geologists and samples are selected according 

to different criteria or different operational procedures.

It will be apparent that bias that is variable in any nontrivial 

way will render the data from the geochemical program useless regardless 

of the methods employed in attempts at data interpretation* For 

example, if geochemical values from any r estricted part of the sampled 

region were biased, due to either sampling or analysis, in a way that 

differed from the bias in data from the remainder of the region, the 

difference in the bias would distort the interpretation of the regional 

geochemical variability whether the interpretation was based on either 

elaborate statistical or conventional procedures. No amount of 

statistical treatment or computer processing would help. Any appreciable 

amount of variable bias would also invalidate analysis of variance 

procedures because the additive property of the variance would be 

destroyed. In statistical terminology, the experimental errors would 

not be independent.
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The foregoing assertion is so important that it deserves expanded 

discussion and explanation. Variable bias is the one property of 

geochemical errors that can totally invalidate any attempt at 

interpretation, statistical, or otherwise, and its effect on the 

additivity of variances is only an example. For purposes of illustration, 

suppose that the geochemical sampling model is of the form in equation (5):

(32)

The term A. in this model is the true grand mean concentration of the 

constituent in all potential samples from the region, the term st^is 

the difference between u and the true mean for all samples in the *A 

sampling locality, and the term >#   is the difference between M. *0£j
a

and the analytical value for the j'^A sample from the Jitk. locality.

In other words, * + &  is the true value for the <M sampling locality

and/3^f is the error due to both sampling and laboratory analysis,
w

Suppose further that three samples are collected from each of two 

sampling localities by unbiased procedures and that the laboratory 

methods were also without bias. The data and their underlying components 

may tend to have the properties of the following: 

Locality,-*' Sample,

(33)

1
1
1
2
2
2

Variance

"B 

1
2
3
1
2
3

      V    7 

12
10
8

22
20
18

. 15
27.667

10
10
10
20
20
20

15
25

/ <r
+2
0
-2
+2
0

-2

0
2.667
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Note that the mean of the error is the same (zero) for both localities, 

that the correlation coefficient for the quantities /*"* #£ and /5^   

would be zero, and that the variance of "Xj* is equal to the sum of the 

variances of the two components.

On the other hand, suppose that the samples from both localities 

were collected by a biased procedure or that they were analyzed by a 

biased laboratory method. The data and the underlying components might 

have properties that tend to be as follows:

1
1
1
2
2
2

J
1
2
3
1
2
3

Variance ....

Q~ /

13
11

9
23
21
19

16
27.667

10
10
10
20
20
20

15
25

1 <f
4-3
4-1
-1
4-3
4-1
-1

4-1

2.667

(34)

The mean error (4-1) is nonzero, but is the same for both localities,
the errors are uncorrelated with the true locality means, and the variances

of the two components of variation in the data are still additive even 

though bias is present in the data. Suppose now that bias is present 

in only the data from one of the two localities, due to a difference 

between either the sampling procedures or the analytical methods. The 

data and underlying components may tend to be as follows: 

Locality.^- Sample,

(35)

1
1
1
2
2
2

Mean .

1
2
3
1
2
3

r <r
12
10
8

23
21
19

. 15.5

/

10
10
10
20
20
20

15

   7    g   

4-2
0

-2
4-3
4-1
-1

4-0.5
Variance .... 32.917 25 2.917 
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Note that the mean error for locality 1 is zero whereas that for 

locality 2 is +1 and that the values of X«j-c<* and ftj^\ are correlated 

(jt- 0.29). Because of the variable bias, resulting in correlation

of the components that make up the data (%;;), the variances are not
J

additive,and any attempt to use analysis of variance methods would be 

invalid. However, analysis and interpretation of the data by any 

other method would also be misleading.

In order to emphasize the fact that it is the variable bias alone 

that destroys the property of additivity, we may form another set of 

data and underlying components wherein variable imprecision is present 

and the frequency distributions of the errors are asymmetrical. Also, 

bias will be introduced but will be set equal for both sampling localities*,

Locality, ^ i>ample,i *^M A TVU.
U " '

1
1
1
2
2
2

1
2
3
1
2
3

15
12
11
24
23
21

10
10
10
20
20
20

/ ~*At\>f * i
+5 '
+2
+1
+4
+3
+1 .

Mean Variance

"I

> +2.667 2.889
I"1

I +2.667 1.555
]

(36)

Mean .... 17.667 15 +2.667 +2.667 2.222 
Variance . . 27,222 25 2.222       

Thus, neither imprecision, variable imprecision, skewness, nor constant 

bias cause the property of additivity to be destroyed. This is not 

to say that variable imprecision and skewness do not cause some 

difficulties in analysis of variance methods. Where the imprecision 

is variable, the estimated error variance is only an average of the 

variances for the various localities, (See variance of. ft', in the 

example above.) and probability tests will be inexact. Skewness in
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the errors will also cause probability tests to be inexact and, if 

severe, can invalidate them to an unknown degree. The tests are based 

on the assumption that the population frequency distributions of the 

errors are normal. It will be shown in a later section of the syllabus 

that the presence of both variable imprecision and skewness in the 

errors can lead to variable bias which, as we have seen, can destroy 

analysis of variance methods entirely.

3) Avoiding variable bias 

Variable bias has been shown to invalidate analysis of variance

procedures, which are based on the variance's property of additivity, 

and it is obvious that if the bias is highly variable, it will invalidate 

any method for interpretation of the data. Attempts have been made to 

correct the data for the effects of variable bias, but they are rarely, 

if ever, successful. The obvious question, then, is how to avoid 

introducing variable bias into the geochemical experiment. The best 

way, of course, is to avoid bias altogether. To be practical, however, 

we must recognize the fact that this is generally impossible. 

Analytical methods and analysts do change throughout the course of any 

large geochemical program; also, it is commonly necessary to employ 

more than one geologist or party of geologists to do the sampling in 

such programs. All geologists, or any other samplers for that matter, 

have biases regarding what should be sampled and how the sample should 

be taken or treated in the field, and the biases can vary a great deal. 

There are two practices that can help. The first is to establish 

definite operational procedures (Krumbein, 1960) to be followed in both 

laboratory analysis and selection of samples in the field. These
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procedures in the field will require careful definition of the available 

population and rigid adherence of the rules of the procedure by all 

field parties. They will also require that all field parties be in 

agreement as to how the population is recognized, how samples are 

selected from it,how they are actually collected (i.e., stainless 

steel spade, paper carton, hammer, hammer and chisel, etc.), and how 

they are.treated in the field if field treatment is involved (e.g., 

separation of heavy minerals, acidification of water samples, etc.). 

The second practice that will help in avoiding variable bias is to 

employ formal randomization in both the laboratory and the field. 

Before submitting samples for analysis, all samples should be 

placed and numbered in a sequence that is randomized with respect to 

the localities from which they were taken. The samples should then be 

analyzed in the randomized sequence. This will insure that the effects 

of any periodic or progressive changes in the laboratory procedure 

(e.g., changes in instruments, electrical supply to the instruments, 

or personnel) will be distributed randomly among the samples. That 

is, geochemical values for samples from within the same localities 

will be independently derived and will be independent measures of the 

geochemical nature of the locality. This would not be the case if the 

values were obtained in succession in the laboratory by analysis of 

the samples in the order by which they were collected in the field. 

Analysis of the samples by field order can, and frequently does, lead 

to artificial anomalies on geochemical maps, resulting from periods

wherein the laboratory, for various reasons, may be reporting biased
i
analytical results. Randomization of samples for laboratory analysis
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can easily be accomplished using tables of permuted random numbers 

(fig. 12). The process of randomization may be impractical for 

extremely large geochemical programs because it is necessary to collect 

all of the samples before any of them are submitted to the laboratories. 

In this situation, the only recourse may be to randomize each group 

of samples and to have the laboratory analyze selected standard samples 

periodically. Results from analysis of the standards can then be 

plotted with respect to the sequence of analysis in search of biases 

that change periodically or systematically. This approach is only 

second best, however, and complete randomization should be used if at 

all possible. Certainly any geochemical values used to estimate the 

analytical precision should be derived independently, and not by 

successive analysis of one or more selected samples.

Randomization procedures are also necessary in the field in order 

to insure that the collected samples are independent. The procedures 

begin with identification of all potential samples that meet the 

criteria used to define the population to be sampled, and this requires 

more field work than may otherwise be conducted. It is easier to 

collect a few typical samples of limestone from an outcrop, for example, 

than it is to thoroughly examine the outcrop and identify all potential 

samples of limestone that may be available* Once all potential samples 

have been identified, any method can be used that gives each potential 

sample an equal chance of being selected. For this purpose, it is
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Fig. 12

Permuted random numbers - n»100
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convenient to use a table of uniform random numbers (fig. 13). 

Numbers can be selected from the table to provide X-Y coordinates, 

for example, and the sample taken at the indicated coordinates. Or, 

the numbers can be taken to indicate stratigraphic position above or 

below some stratigraphic horizon. Procedures such as this will 

commonly lead to a general vicinity from which the sample can be taken, 

and other procedures can be used to select the exact sampling point 

within the vicinity. It will generally be found that rock samples, 

in particular, can be taken from only a few places within the vicinity 

with the sampling tools that are commonly available (i.e., a geologic 

pick and hammer, or perhaps a chisel). In this situation, the 

potential samples can be numbered and samples taken from those places 

which are chosen at random from the table of uniform random numbers* 

The need to employ formal randomization procedures in geochemical 

sampling becomes apparent when we consider the result of purely 

subjective sampling. If the sampling locality consisted mostly of 

alternating red and brown sandstone, for example, and if the two types 

of sandstone tended to be of different composition, the variance for the 

sampling locality would depend on whether we chose to collect, say, 

all red sandstone, all brown sandstone, or some of each. With random 

sampling, the collected samples would tend to be in proportion to the 

various kinds of rock types present whether these types are visibly 

recognizable or not. Subjective sampling can lead to biased estimates 

of variance and, frequently, to negative estimates of variance 

components from analysis of variance.
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Fig. 13

Uniform random numbers
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The use of randomization procedures in field sampling can serve 

to avoid bias in sampling the available population, but more important, 

they help to avoid bias that is variable among the sampling localities. 

If the available population is substantially different from the target 

population,however, bias cannot be avoided by any field procedure, 

and if the available sampling localities differ from the locality 

populations in different ways and(or) to different degrees, it will 

be impossible to avoid variable sampling bias. The sampling program 

might just as well not be undertaken.

4) Bias from computational procedures.

Bias can result from improper statistical treatment of the 

analytical data as well as from incorrect laboratory procedures or 

prejudices in sampling. For example, if a single rock or soil sample 

is thoroughly homogenized in the laboratory and aliquots of the 

homogenized sample are analyzed repeatedly, a frequency distribution 

of geochemical values will be obtained. A question then arises regarding 

the best estimate of the true concentration of the constituent in the 

original sample, assuming that the method of analysis is imprecise but 

totally unbiased. Three choices of the best estimate are immediately 

apparent: 1) the arithmetic mean, 2) the median, and 3) the mode. 

If the frequency distribution is asymmetrical, these estimates will 

all differ and can differ significantly if the asymmetry is pronounced. 

There is some justification for choosing the mean in that this is the 

center of gravity for the frequency distribution. However, if the 

arithmetic mean is the correct value for the sample, and the frequency
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distribution of repeated analyses is asymmetrical, it follows that 

numbers of positive and negative analytical errors are unequal. This 

would seem improbable for an unbiased method. There is also some 

justification for accepting the mode of the distribution as the best 

estimate of the true value in that the mode is the most commonly 

occurring analytical value among all values derived in the repeated 

analysis of the sample. If the distribution is asymmetrical, however, 

the mode, like the arithmetic mean, as the correct value necessitates 

that the numbers of positive and negative analytical errors are 

unequal. It is suggested that the median is probably the best estimate 

of the true value for the sample. If the median is taken as the true 

value, it follows that the numbers of positive and negative values are 

equal, even though, if the distribution is asymmetrical, the magnitudes 

of the positive and negative errors will not be the same. There is 

good reason to believe that this is actually the situation for all 

but the dominant chemical constituents in rocks and soils (chiefly 

SiC^) because analytical values cannot be negative and so negative 

errors are restricted in magnitude whereas positive errors are almost 

unrestricted in this regard. The smaller magnitude of negative errors 

is to be expected wherever the analytical method is based on observation 

or measurement of densities or intensities that vary as the logarithm 

of the concentration.
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If the observed frequency distribution of errors is symmetrical, 

the estimated median and arithmetic mean are the same; if the 

distribution is normal, the median, mean, and mode are all equal. 

If the distribution is asymmetrical, the median can be estimated as 

the detransformed equivalent of the arithmetic mean computed for 

some transformation that is symmetrically distributed. If the 

distribution is lognormal, the median can be estimated by the 

geometric mean (C^fl) ; that is, the antilog of the mean logarithm. 

These relations are important because analysis of variance methods, 

as well as most other statistical procedures, are based on the premise 

that the arithmetic mean is the best estimator of the correct value 

when applied to error distributions. If the distributions are 

asymmetrical, the statistical methods can induce at least a small bias 

in the final answers.

The frequency distribution shown in figure 14A. was derived from 

100 replicate analyses of the same sample for ?2^5* ^e samP^ e was 

of sandstone from the Sawatch Quartzite, of Cambrian age, in central 

Colorado. About 30 pounds of the sandstone were collected by J. J. 

Connor and the writer and then thoroughly homogenized in a rotating 

drum for about 10 hours. The .homogenized sample was then split into 

100 equal parts with a Jones-type splitter constructed of aluminum. 

These 100 samples were then randomly interspersed with 400 other 

randomly ordered samples of sandstone and submitted for analysis. 

The variability demonstrated by the frequency distribution (fig. 14) 

is due entirely to analytical imprecision, including the procedures 

of sample preparation and the extraction of aliquots for actual analysis.
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The population median was estimated to be 0.37 percent ?2®5> as 

shown in figure 14B. Analysis of variance procedures would be based 

on the assumption that the best estimate of the true concentration 

is the arithmetic mean. If the analysis of variance were directed 

at the original percentage data, the arithmetic mean would be taken 

as 0.40 percent P2°5 ( fi§' 14A)   This value differs from'the median 

because the frequency distribution is asymmetrical (<j, » 1.47). If 

the analysis of variance is directed at the logarithms of the 

percentage data, the arithmetic mean is taken as -0.4158* The antilog 

of this value is the geometric mean, 0.38, and is closer to the median 

because the distribution of the logarithms is more symmetrical 

(J, » -0.22) than that of the original data (fig. 11C). Thus, an 

analysis of the variance in the logarithmic data would be based on 

the assumption that the best estimate of the true value for the sample 

is 0.38 percent ?«0 . If it is agreed that the median of the distribution 

is the best estimate of the true value, a log transformation of the 

data prior to the analysis of variance and prior to other statistical 

treatment would reduce the bias resulting from the computations.

The considerations above might be trivial if one could be certain 

that biases introduced by failure to transform were more or less 

constant across all sampling localities and across all samples. 

However, if the distribution is asymmetrical, the degree of bias can 

vary with the amount of the constitutent in the samples or in the 

sampling localities. If the population distribution is lognormal, 

for example, the bias is:

Bias   Arithmetic mean - Median
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and from table 1:

Bias = exGf. i-</- C** or

Bias - exj> (y*) (exj> (&/Z) - /)

If the variances of the logarithms ( <r ) are homogeneous across all 

samples and all sampling localities, the bias is proportional to 

the median. Because examination of the variability among medians 

(estimated true values) is the very purpose of most investigations, 

variable bias from failure to transform the data should be expected. 

III. Analysis of variance and methods of computation.

The purpose of analysis of variance in geochemical sampling is 

to estimate the magnitudes of the various sources of variation in 

the data. For example, if the major source of variation is the 

laboratory procedure the true compositional variations among the 

samples may be almost completely masked^and descriptions of the 

true variations may require either a more precise laboratory method 

or numerous replicate analyses of each sample. Similarly, if the 

major source of variation is found to be within sampling localities, 

the variations among localities might be described only by collecting 

more samples within localities. In some situations, the variation 

among localities might be so small that efforts to describe the 

variations among them might be totally futile.

It was shown in the previous section of the syllabus, in the 

discussion of analytical errors, that the components of variance are 

additive if variable biases are absent. The purpose here is to show 

that if variable biases are absent, the components of variance can
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be recovered from the data. First, however, a mathematical 

explanation will be given of why variances are not additive if 

variable bias is present in the data. This is important because 

analysis of variance methods are based on the variance's additive 

property. Suppose, for example, that we have collected fin samples 

by some randomization procedure from /?^ sampling localities. Our 

sampling model is as given in equation (5):

. (37)
If we move the term X to the left side of the equation and square 

both sides, we obtain:

* °£ + /£,- * * <v% . 08)
The term i( in equation (38) is defined as the true average for the 

entire region of investigation plus the average bias in selecting 

sampling localities plus the average bias in selecting samples and 

in laboratory analysis. It follows then that the terms <X^ and^-- 

have means of zero across all samples, although not necessarily for 

any specific sampling locality. The next step is critical. If 

variable bias in sampling and laboratory treatment is absent, the

terms &  and/3;; are uncorrelated, and the final term in equation (38) ' cr

will tend toward zero when the equation is summed across all

samples. When the nonzero sums are divided through by t^^Lj/U » we 

have:

(39)
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Thus, the variance of %^- is equal to the sum of the variance among
9

sampling localities plus the variance among geochemical values from 

from within localities. The relationship holds only where oc^ and 

p^. are uncorrelated. The same type of relationship can be shown
V

for sampling models more complex than that in equation (37). All 

cross-product terms that appear on squaring the equation must tend 

toward zero as the relations are summed across samples. In other 

words, variable bias (or correlations among the errors) must be 

absent.

If the sampling model is as given in equation (37), it is the 

variances of oL- and £>  - that are of prime interest. These variances~ r*^
indicate, respectively, (1) the amount of variation among sampling 

localities and (2) the amount due to sampling the localities plus 

laboratory treatment. However, we can never know the individual

quantities of ct^ and/3^-; we see only the values %'>» Nevertheless,
j a

the quantities 0^ and 0% determined the value of <T* and, because

of the experimental design used, can be estimated from the data, 2-J/.
</

Only to illustrate that this is true, let us suppose that the data

are the values of %£  given in expression (36) and that the data
<T

comprise the entire population; these data are the values of 15, 12, 

and 11 from one sampling locality and the values of 24, 23, and 21 

from the other. The variance of the first three values is 2,8889 

and that of the second three is 1.5555; the average of these variances 

within the two sampling localities is 2.2222 and is equal to 0*- as given
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previously. The two sampling locality means are 12.6666 and 22.6666;
o/yworwy ^ 

the variance 4^the means is 25, equal to cr^ given previously. Thus,

2.the two variance components contained in the total variance, ov > can 

be estimated from the geochemical data and knowledge of the sampling 

design followed in collection of the data.

The computational procedure followed above is correct only in 

the rare (almost non-existent) situations where the entire population 

has been sampled. Where less than the total population has been 

sampled, these procedures are incorrect for two reasons: (1) they do 

not take into account the degrees of freedom available for estimation 

of the variance (see previous discussion), and (2) they do not include 

the necessary correction of the between locality variance for the 

effect of variance within localities. If the same data are regarded 

as a fraction of the total population, conventional computational 

procedures for hierarchical (nested or multi-stage) analysis of variance 

designs are used. The procedures, applied to the same data, are as 

follows:

1
1
1

2
2
2

1
2
3

1
2
3

15
12
11

24
23
21

1 "«F " '

38

68

106

2,036 6,068 11,236 (Sums of squared
values)
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55 1 - (6,068/3) - (11,236/6) =» 150

55 2 - (2,036/1) - (6,068/3) - 13.3333

V - 150/1 » 150

V » 13.3333/4 - 3.3333 

^^ (150 - 3.3333)/3 - 48.8889

<£L - 3.3333 /^

The values SS, and SS 2 are the "sums of squares"; the denominator

values within parentheses are the numbers of %' ; values contained
f

in the sums that were squared to form the respective numerators. The 

values V^ and V« are the "mean squares"; the denominators (1 and 4, 

respectively) are the numbers of degrees of freedom available for 

estimating each mean square. One degree of freedom is available 

for estimating V^ because there are two sampling localities (^^-O 

and 4 degrees of freedom are available for estimating V because there

are two sampling localities with two degrees of freedom available from
"f f^ 

each (l^Csi^ "'))   T*ie values >4. andx4.- are the estimated components

of variance between and within sampling localities, respectively. 

It will be noted that they are quite different from the values computed 

when the data were regarded as comprising the entire geochemical 

population (25 and 2.2222, respectively).

The procedures followed in the computations above are defined in 

detail, for the general case, in figure 15 from Krumbein and Slack 

(1956). They apply equally well to hierarchical models containing 

any number of terms so long as the numbers of samples (i.e., A^, 

/j^ , etc.) are equal across all categories at each level of the model.
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Fig. 15
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* £jk S d)jkm are independent with 

Mean 0 and variances si.S^Sj 8 S| 
respectively.

i varies from I to a 
j varies from I to b 
k varies from I to c 
m varies from I to d 
where

a » number of supertwps.
b   number of twps./supertwp.
c s number of mines/twp.
d » number of samples/mine
n « abed = total samples 

collected.

From Knimbein and Slack (1956, p. 754)
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They would not be applicable, for example, if we had collected three 

samples from one of the localities and only two from the other. 

Sampling designs such as this are said to be unbalanced and different 

computational procedures are required. Analysis of variance 

procedures for unbalanced sampling designs are given by Anderson 

and Bancroft (1952, p. 327-330) and have been used extensively in 

geochemical investigations by the U.S. Geological Survey (USGS STATPAC 

computer program D0038) .

Even though the computed values of -U. , and.^, in the previous
ov £9

example are non-zero (suggesting that neither the sampling localities 

nor the samples within localities are compos it ionally homogeneous) ,

they are only estimates and so it is possible that the corresponding

4 2.
population values, (JL, and or. , are, in fact equal to zero. Tests«*. p

for the likelihood of this possibility are available and can be 

important. For example, it would be futile to attempt to map the 

variation among sampling localities if there is a good likelihood 

that no variation actually exists. The convention test used is based 

on the F-statistic, which is a ratio of mean squares. For the 

preceding example: . .. . 

F « VV -.<+ 3 ) - 45   (39a)

Note that as goes to zero, the "computed F goes to unity. Tables«c

of critical values of F for various levels of probability are widely 

available; the critical values also vary with the degrees of freedom 

available for estimating the numerator, V., and the denominator, V«. 

For the example above, these numbers of degrees of freedom are 1 

and 4, respectively, and the critical value of F for the 0.01 level
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of probability (denoted by F (1,4)) is 21.2. Thus, the computed
U . Ui

value of F in equation (39a) is significant at the 0.01 level; an
t. 

estimate of  *£<* 48.8889 would be expected less than 1 time out of
2.

100 if 0v were actually zero. The critical value F (1»4), ^* 0*001

however, is 74.1; that is, computed values of F would be expected
2.

to be as large as 74.1 about 1 time in 1,000 if O^were actually 

equal to zero. The probability that the computed value of F "45 

arose by chance rather than from real compositional variability 

among sampling localities is somewhere between 0.01 and 0.001. 

IV. Conventional sampling designs.

A number of conventional sampling designs are described by 

Cochran (1963) and Mendenhall, Ott, and Scheaffer (1971) who give 

equations for estimating the population means, variances, and 

confidence intervals about the means. The more widely used designs 

are illustrated in figure 16. Simple random sampling (fig. 16A) of 

a region in geochemistry consists of selecting /I sampling points 

by picking t sets of X-Y coordinates from a table of uniform random 

numbers (fig. 13). This is the most straightforward type of sampling 

that could be performed, and the subsequent estimation of the 

population parameters is the least complicated. Stratified random 

sampling (fig. 165) can improve efficiency wherever the population 

can be divided into subpopulations that are uniform with respect 

to the variable being studied compared with the variability among 

them. More efficient sampling implies that the confidence interval 

about the mean will be smaller for the same number of samples.
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Pig. 16

A. Simple random 
sampling

B. Stratified
random sampling 
with natural
strata

C. Stratified
random sampling 
with artificial 
strata

D.-Two-stage 
sampling with 
natural strata

E. Two-stage 
sampling with 
artificial 
strata

?. Three-stage 
sampling with 
artificial 
strata

    * *  

G. Systematic 
sampling

H. Cluster 
sampling
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Stratified random sampling is conducted by taking a simple random 

sample from each (all) of the subpopulations. At the worst, 

stratified random sampling can be no less efficient than simple 

random sampling. Thus, if appropriate subpopulations could not 

be recognized, nothing would be lost by subdividing the population 

arbitrarily as in subdividing by some sort of geographic coordinates, 

as in figure 16C. Doing this would serve to spread the sampling 

points out more evenly over the region than might be the situation 

with simple random sampling. A more even spread might offer 

advantages in examinations of regional variability. If the sub- 

populations are randomly selected for sampling (i.e., not all of 

them are sampled) the sampling is according to a two-stage ot two- 

level design (fig. 16D). That is, subpopulations are selected at 

random, and then samples are randomly selected from each. Again, the 

subpopulations may be defined according to geographic coordinates, as 

in figure 16E. It is also possible to divide the subpopulations 

into sub-subpopulations, in which case the design would be referred 

to as three-stage (fig. 16F). In geochemistry, these multi-stage 

designs are commonly referred to as nested or hierarchical designs 

with two or more levels.

Systematic sampling (fig. 16G) consists of taking samples at 

regular intervals determined by the intersections of a square or 

rectangular grid. The first sampling point is chosen by a random 

ization procedure, but then all subsequent points are fixed.
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Systematic sampling is commonly used in soil sampling and in drilling 

programs, but is generally impossible where the population is not 

completely available for sampling due to poor outcrops, or 

discontinuities in the outline of an ore body. Systematic sampling 

could lead to bias if any sort of periodic spatial variation were 

present in the population,

Cluster sampling (fig. 16H) consists of identifying subpopulations 

and selecting a number of them at random, but differs from two-stage 

sampling in that the entire subpopulation is sampled. This method 

is commonly used in survey sampling of people, for example. House 

holds are chosen at random and visited; once at the household, it 

is almost as easy to get information from all of the individuals who 

live there as it is to get the information from one of them (a simple 

random sample) or to sample the individuals randomly (a two-stage 

sample). If all of the individuals are questioned (or measured), 

the procedure seems perfectly analogous to procedures used in 

drilling exploration in situations where the drill hole sites are 

selected at random or by some procedure that leads to an approximate

random selection. If the entire drill core is assayed by dividing
j

it into equal increments, the drill hole may be regarded as a cluster, 

and the estimation procedures given by Cochran (1963) and by Mendenhall, 

Ott, and Scheaffer seem perfectly applicable. The consequences of 

spacing the drill hole sites at equal or otherwise regular intervals, 

as is commonly done, are not known.
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A great deal of geologic and geochemical sampling is not designed 

at all, especially in geochemical exploration. No reason can be 

given for this, but it is unfortunate because geochemical exploration 

is an expensive endeavor and every precaution should be taken to 

acquire data that are subject to rigorous evaluation.

The sampling associated with drilling exploration is always 

carefully planned, but the designs used are generally not thought of 

as belonging to one or more of the conventional types referred to 

above. If the drill holes are unequally spaced over the ore body, 

various schemes are used to derive weighting factors for estimating 

weighted means, as pointed out in an early section of the syllabus. 

If the holes are equally spaced, as on a rectangular-grid pattern, 

such weighting is unnecessary. 

V. The problem of independence of samples.

The importance of using randomization procedures in field sampling 

and laboratory analysis has been stressed in earlier parts of the 

syllabus. Unless randomization procedures are used, the geochemical 

values cannot be regarded as independent with any comfortable 

assurance, and one can never be certain of the degrees of freedom 

available for the estimation of variances and confidence intervals

about the estimated means. In fact, there are some researchers who
axe not independent even 

maintain that geologic samples/where randomization procedures were

used (See remarks of David and Dagbert, 1974, p. 167, concerning the 

work of Krumbein and Slack, 1956). This attitude is based on the fact 

that geochemical or assay values are continuous variables and are
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spatially ordered. That is, values from samples that were separated 

in space by less than a certain distance are correlated rather than ' 

independent, and only samples from points beyond this range of 

distance provide independent geochemical values. These researchers 

seem unaware of the fact that randomly selected samples from an 

ordered population are, nevertheless, random, just as systematic 

samples from a randomly ordered population are also random (Cochran, 

1963, p. 214). It is possible that the source of confusion is in 

the interpretation of what is meant by independent samples (observations). 

Observations are independent when they are unrelated. Correlation 

among observations arises when the samples are collected in groups or 

clusters, as when samples are taken close together from more widely 

separated drill holes. If the samples from one drill hole are high 

in the measured attribute (e.g,, assay value) and those from the other 

drill hole are comparatively law, the observations will be correlated 

according to the definition given by Cochran (1963, p. 242). In this 

situation, the variance estimated from equation (13) will be biased, 

as will the variance of the mean estimated from equation (19). The 

reason is that although we may have /l^ drill holes with A* samples 

from each, we do not have /**'*J< /V* independent observations even 

though the drill hole sites and the samples were selected by randomiza 

tion procedures. If these selections were random, however, analysis 

of variance procedures could be used to obtain unbiased estimates of 

the variances within and between drill holes, and equation (23) would 

give an unbiased estimate of the variance of the grand mean (i.e., the
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average grade of the deposit). Ordered populations, analogous

to the continuous variables of "geostatistics, 11 are nothing new to

conventional statistics.

The question of independence of observations arises in problems 

other than those of estimating the variance or the confidence 

intervals about a mean* For example, the probability tests associated 

with multivariate procedures, for example, require knowledge of the 

number of degrees of freedom and, consequently, of the number of 

independent observations. If the samples had been collected according 

to any procedure other than simple random sampling, especially if they 

had been collected in any kind of clusters (including drill holes), 

and if the population is ordered in any way, not all of the samples 

will be independent. According to the principles of geostatistics 

(Matheron, 1963), two or more samples are independent only if they 

were taken from points separated by distances equal to or greater than 

the geostatistical range. Estimation of this range is based on the 

fact that samples from a rock body tend to be increasingly different 

with increasing distance between the points from which they were 

collected up to some limiting distance beyond which the relationship 

disappears. This limiting distance is the geostatistical range and 

is estimated from a variogram such as that shown in figure 17* 

Variograms can be estimated from the variance components estimated 

on the basis of hierarchical sampling designs as well as from the 

techniques of geostatistics (Miesch, 1975). Knowledge of this range 

can be useful in determining how sample values can be averaged in
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order to arrive at independent observations. For example, if a 

multi-level sampling design had been used, wherein each level was 

determined by the spacing between sampling units, the range would 

indicate the minimum dimensions of the units that could be averaged 

in order to obtain average values that could be regarded as 

independent. 

VI. Fundamental properties of geochemical maps.

Two properties of geochemical maps that must be considered 

before deciding on the sampling design and procedures are resolution 

and stability. The resolution of the map pertains to the amount of 

detail specifically, the distances between adjacent sampling localities. 

If the localities are closely spaced, small-scale features of the 

geochemical pattern over a region can be identified, but if they are 

widely spaced, only the gross features of the pattern may be described. 

The stability of the geochemical map pertains to its reproducibility  

that is, the similarity that would exist among maps derived from 

subsequent repetitions of the entire experiment, including both 

sampling and laboratory analysis.

The stability of a geochemical map will depend on the geochemical 

variation among sampling localities compared with the variance of 

their means. That is, if the localities are vastly different, the 

locality means used to construct the geochemical maps need be known 

only approximately. On the other hand, if the differences among 

localities are subtle, the locality means must be estimated more 

precisely. As is shown by equation (19) and by equations of the
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type in (23), the variance of a locality mean is determined by the 

variance within localities and the number of independent samples 

from each.

Prior to the initial geochemical program, the variances between 

and within sampling localities can only be guessed at from previous 

experience, and the results from the.initial program may show that 

the expected stability of the geochemical map was not achieved. 

In this situation, the initial results can serve to estimate the 

amount of additional sampling required to obtain any desired degree 

of map stability. Procedures for doing this are described in the 

following sections of the syllabus. 

VII. Sampling designs for geologic and environmental studies.

Most of the many varied objectives in geochemical sampling fall 

into either one of two principal categories: (1) to describe the 

regional chemical variability throughout a region or within some 

selected geologic unit, or (2) to detect anomalous features of the 

geochemical pattern that is, geochemical "anomalies." The first 

of these objectives is generally present in geochemical sampling 

that is part of some broader geologic investigation, such as 

sampling to describe facies changes in sediments or to define 

compositional gradients in plutonic rocks or regionally metamorphosed 

complexes. The first of these objectives is also appropriate in 

sampling programs designed to describe geochemical environments in 

support of research in epidemiology or to provide the geochemical 

baselines necessary in the detection and measurement of chemical
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pollution. The second type of objective is characteristic of 

sampling programs in geochemical exploration and will be treated 

in the following section of the syllabus.

The principal problems in the design of sampling programs to 

describe the regional chemical variability are in the selection 

of spacings between sampling localities (resolution) and in 

determining the number of samples to collect from each. Actually, 

neither of these questions can be answered until something is known 

about the type of regional and local variabilities that are present. 

A qualitative impression might be obtained by field examination, but 

it would be difficult to express these observations in terms of 

variances. The only good way to obtain the information necessary 

to design an efficient sampling program is to conduct a preliminary 

geochemical survey.

Suppose that we are sampling soils and that the region was square 

with 1,02^ meters on a side. A regularly shaped region (square or 

rectangle) is not required, but may be better for purposes of 

illustration. The region might be divided into 16 square localities, 

each 256 meters on a side, as shown in figure IS. Then the localities 

could be subdivided into quadrangles (64 m across), quadrangles 

divided into plots (16 m across), and plots divided into cells (4 m 

across). Suppose now that from each of the 16 localities we select 

two quadrangles at random, from each quadrangle we select two plots 

at random, from each plot we select two cells at random, and from 

and from each cell we select two samples at random. With this design
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the localities are our master sampling localities, the quadrangles 

are sublocalities within localities, and so forth. The sampling 

procedure would lead to 256 samples; we shall assume that quadrangles, 

plots, cells, and the samples from within cells were selected 

according to some appropriate randomization procedure so that no 

bias was introduced in the selection of any of these items. Above 

all, it will be necessary to assume that if bias was introduced, 

the bias tended to be constant across all elements of the sampling 

design variable bias was absent in the sampling.

Let us suppose that the laboratory procedures to be used in 

analyzing the samples are new to us and that we have reason to be 

concerned about the adequacy of the laboratory precision for the 

task at hand. If we regard the sampling experiment as a pilot one 

that will probably be followed by a much more detailed, and so much 

more costly, geochemical survey, it may be advisable to crush each 

of the 256 samples, homogenize the crushed aggregate, and then split 

each into two equal parts. We now have 512 samples for laboratory 

analysis; one-half of the laboratory expenditure will be in the 

interest of establishing the precision of the laboratory procedures.

Using a table of permuted random numbers similar to that in 

figure 12, we will place the 512 samples in a randomized sequence 

and number them from 1 to 512. (Extreme care should be taken to 

preserve a record of the field sample number corresponding to each 

random number; the field number should identify the exact position 

of the sample with respect to the sampling design.) The 512 samples
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are then submitted to the laboratories. There will be no way for 

the laboratory to know which samples are splits of which others, 

and we are assured of obtaining an unbiased fair estimate of the 

laboratory precision,

The statistical model on which the sampling is based is:

* * *j

where L represents the localities, <9 represents the quadrangles, P

represents the plots, £ represents the cells, 5 represents the samples,

and A represents the analyses. Thus, each chemical value, % ' / /^-« »
J / 

is regarded as being determined by the grand mean, it , for the entire

region plus a deviation related to the particular locality from which 

the sample came, the quadrangle, the plot, and so forth. The final 

term is the deviation of the particular analytical value from the 

true value for the sample; that is, the analytical error. The total 

variance among the 512 analytical values will be partitioned as 

follows:

On receipt of the analytical data for the 512 samples from the laboratory, 

the data will be derandomized--that is, ordered by analysis within 

sample, sample within cell, cell within plot, and so forth* Analysis 

of variance procedures will then be used to estimate the variance 

components in equation (41) as:
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Examination of the frequency distribution of the data may suggest 

that the population frequency distribution is asymmetrical. If so, 

inasmuch as the terms in the model (equation 40) have zero means and 

are uncorrelated, it will be reasoned that one or more of the 

population frequency distributions of the components are asymmetrical

also. Some transformation of the data, %  . , , will then be sought' ^jU«np '

that yields a frequency distribution that is at least approximately 

symmetrical. More often than not, for data pertaining to minor 

chemical constituents, a logarithmic transformation will appear satis 

factory. This will be especially true if we find that the means and 

variances for localities, quadrangles, etc., are correlated. Also, 

if the population frequency distributions of the components of the 

model are symmetrical on a log scale, we will have reduced the likelihood 

of variable bias caused by computational procedures (section II-4 of the 

syllabus) and will have provided a better basis for tests of the 

statistical significance of the six sources of variation in the data. 

In addition, we will be examining proportional rather than absolute 

variation in the data, as has long been the practice of experienced 

field geochemists (section 1-5 of the syllabus). If a log transformation 

is used, the left side of the model in equation (40) changes to

°3 ^**\k.}"lp anc^ a** t*ie terms on the right side are in units of 

logarithms rather than in units of percent or parts per million. 

Similarly, all of the variances in equations (41) and (42) are variances 

of log concentration. The antilogarithms of their square roots are 

geometric deviations.
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The estimates of the variance components will provide information 

regarding the nature of the geochemical profile across the region, 

and this in turn can be used to design an efficient final sampling 

plan that will lead to a geochemical map with any desired degree of 

stability. Our sampling localities for the final sampling program 

will be defined and spaced according to the type of geochemical 

profile present so that the major features of the profile can be 

described by the map. That is, the resolution required for the map 

will depend on the type of geochemical profile that is present. If 

the samples are analyzed for more than one chemical constitutent, 

we may find that a different final sampling plan is required for each 

of them. However, 'this is generally not the case. If the mineralogical 

constituents of rocks and soils vary highly in concentration on local 

scales, for example, so will all of the chemical constituents they 

contain, and if the mineral constituents and their relative proportions 

tend to be uniform on local scales, their chemical constituents, more 

often than not, will tend to be uniform also*

The two samples collected within each cell of the sampling design

were each collected at randomly selected points that could be as
r"^" " " 

much as 5.6 meters apart ( y U2442 ). According to an equation by

Ghosh (1951, p. 24), however, the average distance between sampling

points would be D * 0.521a » 2.08 meters, where "a" is equal to 4,
2.

the dimension of the square cell. The variance component,^., therefore,
o

will be taken as a measure of all variation in the region that is on 

scales of two meters or less. That is, any differences between soil
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samples from within two meters of each other will contribute to the
* 

component,^,-. If this component were found to be high in relation

to all of the other components, we would conclude that nearly all 

of the variance in the region is local in character and that the 

spacings among the sampling localities in the final sampling program 

would have to be less than two meters (how much less is unknown) in 

order to describe the major part of the geochemical variation. Any 

wider sampling interval would result in failure to describe the major 

variation in the region. A geochemical map of extremely high resolution 

would be required,

Ghosh's equation applies to points within a square area, and in a 

strict sense, not for squares within squares. However, as an approxi 

mation, we shall assume that the average distance between cells within 

plots is one-half the dimension of the plot, that the average distance 

between plots within quadrangles is one-half the dimension of the 

quadrangle, and so forth. The scales of variation associated with the 

first five variance components, then, are:

Component_____Range of scales (meters)
a. 

«6<2 Less than 2

^ 2-8 

+p 8-32

^ 32 - 128 *?

£. greater than 128

The variance component, xL. , is affected by variations on scales of 

128 to 256 meters, but also by variations among localities; the centers
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of localities are separated by distances that range from 256 meters

to the total distance across the region of investigation.
a,

If the estimated variance component, A* , is high and all the
C»

others are low, we will know that most of the geochemical variability 

is on scales between two and eight meters. That is, samples from 

within a cell (two meters apart on the average) tend to be similar as

do the average values for plots, quadrangles, and localities. The
x

component,,A , will be large because cell averages tend to differ 
c»

more than could be expected to have resulted from variability within 

cells. Also, the observed differences among the averages for plots, 

quadrangles, and localities will be no greater than might be expected 

from their uncertainties due to within cell variation. In this 

situation, the geochemical profile would have a somewhat broader 

"wave length" than would have been the case if most of the variation had 

been between samples from within cells. The "wave lengths" would tend 

to be in the range from two to eight meters. The major part of the 

geochemical variability could be mapped only by spacing sampling

localities at a distance of two meters.
2. 

If the variance component, <4*. , were found to be large in comparison

with all of the others, the geochemical profile would be known to be 

smooth and undulating with "wave lengths" of 128 meters or more. The 

major part of the geochemical variability could be mapped by spacing 

sampling localities 128 meters apart.
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It should be noted that each quadruple increase in the distance 

between sampling localities results in a reduction of the number of 

localities to one-sixteenth. An increase of the sample locality spacing 

from two meters to eight meters, for example, reduces the number of 

sampling localities from 262,144 to 16,384, and an increase from eight 

to 32 meters reduces this to number to 1,024, It is apparent that if 

most of the geochemical variability is on small scales, the number of 

samples required may be astronomical, and the intended geochemical 

survey of the region may be impractical. In this situation, it should 

be concluded only that no large scale geochemical variation is present 

and that the geochemical character of the region can be described in 

terms of statistics that specify a frequency distribution that is 

applicable for any sub-region within the region as a whole.

On the other hand, if the sampling locality spacing that was found 

to be appropriate is a practical one in terms of the resources that 

will be available for the final sampling program, an efficient sampling 

design can be devised. The first concern will be to construct a 

geochemical map that is stable one that shows few, if any, major 

features that may have resulted from accidents of sampling. The degree 

of difficulty in the sampling problem will depend on the variation among 

the sampling localities relative to the variation within them, or by a 

variance ratio. V : ..
Ny

V «    
Dv (43)

where the numerator, Ny, is the variance among the localities and the 

denominator, Dy , is the variance within them.
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Suppose that it was decided to construct a map that described the 

geochemical variations on scales of 128 meters or more, so that the 

centers of the sampling localities were placed 128 meters apart. The

number of sampling localities will be 64. The intention would be to
£

describe only the variance that contributed to the component, 4» .

The appropriate dimensions of the sampling localities would depend 

on the scales of the variation within them. For example, if all of 

the variation within the master sampling localities were on scales 

of two meters or less, the localities for the final sampling program 

need be no more than two meters across. However, if variation within 

the original master sampling localities existed on scales up to 128 

meters, the localities for the final sampling program should be of

this dimension. In either event, the numerator of the variance ratio
2. 

is taken as A, , and the denominator is the sum of the other five
L 

components.

The values to be plotted on the geochemical map will be sampling 

locality means. This is done in the interest of map stability, 

although at the cost of map resolution. The question is, how many 

geochemical values are required for each mean in order to achieve the 

map stability that is desired. The answer can be given in only an 

approximate way. It is necessary first to define what has been called

the variance mean ratio. VL,, as:/*t

NL
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vhere A/Y is as previously defined and D^is the variance of the 

sampling locality means. For this example, P^ is estimated by an

obvious extension of equation (23):

2. z. «. «.

where n is the number of quadrangles within each locality, ftp is the
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number of plots within each quadrangle, and so forth. It will be noted 

that the variance ratio,S/, is determined by the nature of the compo 

sitional variability in the rock or soil unit, whereas the variance 

mean ratio, /^, can be increased or decreased by changing the number 

of quadrangles within localities, the number of plots within quadrangles, 

and so forth. With a sampling plan such as the one used in this example, 

a more correct estimate of D^ would be obtained by introducing the 

finite population correction terms as used in equation (23a). It will 

be seen that if this were done, the five correction terms for the five 

terms on the right side of equation (45) are, respectively, 0.875, 

0.984, 0.998, 1.0, and 1.0, and obviously not highly important. How 

ever, as one increased the subscripted values of r\ in equation (45), 

the correction terms would become increasingly important. If, for 

example, rt^ were increased from two to eight, by sampling one-half of 

the 16 quadrangles within each locality, the correction term would become 

0.5, and if all 16 quadrangles were sampled, the correction term would 

be zero, causing the first term on the right side of equation (45) to 

vanish completely. This is reasonable inasmuch as the selection of 

quadrangles cannot be a source of error if all quadrangles are sampled.

At this stage in the development of geochemical sampling theory, 

we are not highly certain just how large V^ should be in order to 

construct a geochemical map of satisfactory stability; we know for 

certain only that the larger V^ is, the better. Computer simulation 

experiments by R. R. Tidball (see Connor and others, 1972, p. 9), and 

confirmed by the writer, suggest that if vis less than about 1.0,
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the true geochemical pattern for the region will not be clear from 

the geochemical map* As V^ is increased above 1.0, the true geochemical 

pattern becomes increasingly clear from the map of the sample data* 

Maps based on values of v^equal to about 3*0 or more appear to reflect 

the true geochemical patterns very well.

Equations (44) and (45) with or without the correction terms- 

provide the basis for determination of the number of samples required 

per sampling locality and the way they should be spaced. The objective 

is to increase V^ as much as possible with the smallest number of samples 

and lowest possible cost in the field. If, for example, the largest
2.

term in D^were-^u, an increase in v^ would require an increase in H ,

fl , orri*, or increases in all of them. At the extreme, if all were 
r £
increased to their limit, 16, the first three finite population correct 

ion terms would be zero, and the value of D^. would depend only on the 

final two terms of equation (45). Ordinarily, in a situation like this, 

such extensive sampling is not required, and D^can be reduced sufficiently 

just by increasing /)... This would result in lower field costs because 

it would require less time and travel than increasing either Ag or ftp.

If the largest source of error in the sampling locality means were
z. 

found to be in the selection of quadrangles (i.e., 4*Q ixi equation 45 is

large), the only way that D^ could be effectively reduced would be to"I

increase A^. Thus, the field costs for the final sampling program would 

be larger than otherwise necessary, and there would not be much that 

could be done about it. If, on the other hand, the major source of
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error was found to be in the laboratory procedures (i.e.,>4/, is large),
A

no additional sampling may be required   a more precise analytical 

method would have to be found, or the number of analyses per sample, 

it- , would have to be increased.

If it was found from the variance components that the resolution 

of the geochemical map would have to be greater than would be obtained 

by spacing the sampling localities at intervals of 128 meters, the

variance mean ratio, v^, will have to be different,, Say, for example,
1* 

that A. .is small, containing only a few percent of the total variance,
x z,

.4, , but that the next component , <4* , were large. The numerator of V^ t
% Q -

* 2- P-
then, would be set equal to A* +<&  , or to >dL only, and the denominator

L. Q 9
would be: a.

(46)

The sampling localities would be spaced at intervals of 32 meters, and 

1,024 localities would be required. The geochemical map would describe 

components of the variability on scales greater than 32 meters. Compo 

nents on smaller scales would be averaged over in computation of the
 *- 2.

sampling locality means. If the two components,-^, and,** , comprised,

2.
say, 40 percent of the total variance,^ , the final geochemical map

7*

would describe about 40 percent of the total geocheraical variation in

the region (assuming that the analytical variance is relatively small). 

The V^ ratio would be increased to any desired value by adjusting the

subscripted n. 3 in equation (46).

2. 2.
If the first two components,^ and«<k , were both of appreciable*  3

magnitude and the sampling localities were spaced at 32 meters, a 

choice must be made as to whether the numerator of v should be set
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2. 2. 2L *  
equal to A*+A* or simplyxl* . If set equal to A>, the sampling

lm Uf O V

requirements for achieving a v^ ratio of 1.0 or greater will be 

larger, but the final geochemical map would be more stable and, 

perhaps, sufficient to describe geochemical variations on all scales 

greater than 32 meters. If both A. and A»^ were included in the 

numerator of v^, increasing v^- to 1.0 or more would only insure that 

the gross features of the true geochemical pattern would appear on 

the final geochemical map.

Knowledge of the variance components may also serve to develop 

other final sampling designs that are structured differently from

the design used in the preliminary survey. For example, if the
2. 2. 12.

components 4, and^L. were large with respect to-AandUL , the final
L. u Or

design might consist of 64 sampling localities spaced 128 meters across, 

each locality consisting of an area eight meters across. The number 

of samples required from each locality would be determined from
2. 

equations (44) and (45); the numerator of K- would be set to <4* and

the denominator would be: - _

(47)

where f\ is the number of samples per locality that are to be collected
a. j.

and analyzed. Because*& and4, are small, little of the variability

will be lost by confining the dimensions of the sampling localities 

to eight meters and spacing them 128 meters apart.

The sampling design outlined in figure 18 is modeled after one 

used by Krumbein and Slack (1956) in a study of radioactivity in a 

shale bed that occurs throughout much of the Illinois Basin. A
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different design that might accomplish the same objective was used 

by Youden and Melich (1937) in a study of the variation in soil pH 

in two small areas of the eastern U.S. A design of the type described 

by Youden and Melich, could be adapted to the example discussed in 

this section of the syllabus by using the multiple "barbell" arrange 

ment illustrated in figure 19. All bars of the barbells are oriented 

in directions selected by randomization procedures, but the lengths 

of the bars are fixed at 128, 32, eight, and two meters. Samples are 

collected at the ends of the two-meter bars. All subsequent procedures 

for analysis of the data and interpretation of the variance components 

are as previously described, except that finite population correction 

factors seem inappropriate. 

VIII. Sampling designs for geochemical exploration.

The sampling designs previously discussed were established partly 

to determine an appropriate resolution for the final geochemical map.

In most geochemical exploration programs, the resolution is established
i

beforehand and depends on the expected size of the exploration target 

as well as on field and laboratory resources available. The objective 

is not to describe as much of the geochemical variability as possible, 

but to examine differences among the sampling localities and to 

identify any localities that appear to be geochemically anomalous 

with respect to the others. The sampling localities may consist of 

grid cells or small areas centered on grid intersections, especially 

in geochemical surveys of soils, but more commonly consist of stream 

segments, stream intersections, streams of a given order, or some other

106



Fig. 19

8 m

2 m

106a



division of streams for stream-sediment sampling. If the exploration 

survey is being directed at rocks, the sampling localities could 

consist of drill holes, stratigraphic sections, or rock outcrops. 

In geochemical exploration by sampling of lake sediments, each lake 

may form a convenient and natural sampling locality. Sampling 

localities in geochemical exploration can be defined in any manner 

that is consistent and meaningful for the purpose at hand.

One practical sampling model that can be used in geochemical 

exploration programs is as given in equation (5):

. (48)

As before, >f represents the grand mean concentration of the constituent

in all potential samples from the target population, ct£ is the differ-

, t/
ence between x and the mean for the JL<*L sampling locality, and A" is / r<*fr

the difference between the mean for the ^st locality and the geochemical

value for the fti. sample from the M^Ji locality. Thus, the term /? ; is f r-*-jp

determined by both natural variation within the -c^L locality and

variance arising from analytical imprecision. The variance of /3«-,
'df- 

therefore, is a measure of both sampling and analytical imprecision.

Z
It would be possible to partition this variance, A, , into sampling

fi
and analytical components by adding another level to the model (see

equation 4), but, if the design is to remain balanced, this would mean 

at least doubling the number of samples to be analyzed. A more practical 

approach might be to select n. of the samples at random, crush each of 

them and then split each into two parts, and randomly intersperse the
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splits in with the other samples for submittal to the laboratory.

The variance arising from laboratory procedures could then be estimated

from the duplicate analyses, %. and X-> b7:

and the variance arising from sampling errors by:

2L *
' (50)

On occasion, due to the accidents of randomization in selecting the
2. 2 

samples for duplicate analysis, the estimate 4^ will be larger than ̂  .s /»
z

In this situation,^ is taken as zero. One highly practical reason
2- 2.

for estimating *6, aud^A. separately is to determine whether the total
PL* VM>

2.
experimental error, ̂ , might be reduced by employing a more precise

analytical method, without further field work. On the other hand, if 
^ 2

A, is small in comparison with,4, , the only way to reduce the total 
   ^»

experimental error would be to collect more samples from each of the 

sampling localities.

The initial goal of a geochemical exploration program is to identify 

parts of the region being explored that may be geochemically anomalous 

with respect to the rest of the region. A geochemical anomaly is defined 

by Hawkes and Webb (1962) as an abnormal geochemical pattern, and by 

Levinson (1974) as a geochemical measurement that deviates from the 

norm. For the purpose here, we shall define a geochemical anomaly as 

a sampling locality mean that differs from other locality means by an 

increment that is sufficiently large to suggest that processes of 

mineralization may have contributed to its magnitude. The criterion

108



used to establish the critical magnitude of this increment will be 

an empirically derived approximation of the "shortest significant 

range." The anomalies identified in this manner will not all be 

related to mineralization. Like anomalies identified in any other 

manner, some will be false anomalies in the terminology of Levinson 

(1974).

The procedures recommended for geochemical exploration are not 

vastly different from those presently in wide use, although some 

different approaches to the design of the sampling program and evaula- 

tion of the data are suggested. The procedures consist of the following 

steps:

1) The target population is identified and the distribution of its 

available portion is determined. If the available portion is of 

very limited distribution, this distribution is shown in some manner 

on a suitable base map. The population can be defined in any manner 

whatsoever--such as 3-horizon soils, stream sediments (-100 mesh 

fraction, for example) occurring on the downstream side of boulders, 

limonite coatings on fraccures, and so forth depending on the 

judgement of the geologist.

2) A total of/l^ sampling localities are defined on the base map and 

spaced according to the discretion of the geologist and the distri 

bution of the available population. The number of localities, n, 9 

will depend on the size of the region to be explored, on the expected 

size of the exploration targets, and on the field and laboratory 

resources that will be available for the exploration program. The
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dimensions of the sampling localities will also depend on the 

judgement of the geologist. As the dimensions increase (limited 

only by the spacing between localities), the proportion of the 

total region actually to be explored increases also. However, at 

the same time, the tendency to mask anomalies of restricted extent, 

by inclusion of background material, increases also.

3) A number of samples,/T,, , are selected from the available population 

within each sampling locality according to formal randomization 

procedures. Unless extreme local variation in the nature of the 

population is noted, ft* - 2 will probably be sufficient for this 

first stage of sampling.

4) After completion of step 3, a total of /t- ^^n samples will be on 

hand. The number of degrees of freedom available for estimating 

the variance within localities, and the variance of sampling locality 

means, will be df » ^ofO^a""/) °r df - f\, \tf\A- 2 as suggested in 

step 3. In order to estimate the contribution of analytical 

imprecision to the error variance of the means, without adding 

another level to the design (and thereby at least doubling the 

required number of analyses), 10 to 20 percent of the /I samples 

are selected at random for duplicate analysis. These selected 

samples are split, and all samples (originals plus splits) are 

placed in a randomized sequence using a table of permuted random 

numbers. Precautions should be taken to be sure that the laboratory 

will have no way to identify the duplicate splits. The samples are 

then submitted to the laboratory in the randomized sequence.
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5) On receipt of the analytical data from the laboratory, the data 

are examined to determine whether the differences between the two 

values for the same locality vary with the locality means. Or, 

especially where n^ is greater than two, an examination is made 

to determine whether the locality means and variances are related. 

If the means and variances are related, log transformation of the 

analytical data is probably called for. Other transformations 

that yield independent means and variances for the sampling 

localities may also be used.

6) Using procedures already described, estimates are made of the
t i a 

variance components and denoted by >4* t& , and>4» ; these are,

respectively, estimates of the variances due to differences among

sampling localities, the natural variation within sampling localities,
2. "L 

and the laboratory imprecision. The sum of A* and,4, , estimated from

i 
analysis of variance procedures, is denoted by^ .    

fi
7) An F-test is made to determine whether or not the variance component

4 2.
JL is significantly different from zero. If-4^ is found to be non 

significant, then so are the differences among the sampling locality 

means, and construction of a geochemical map at this point is not 

advised. The map would not be sufficiently stable to serve any 

useful purpose. On the other hand, geochemical anomalies might 

still be recognized by the appearance of no more than a few extreme 

locality means.
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8) If the F-test shows that the variance among sampling localities 

is statistically significant, however, we know that at least one 

locality (that with the highest mean) is different from one of the 

others (that with the lowest mean). We could then eliminate the 

data from these two localities and perform the analysis of variance 

and the F-test again, possibly eliminating two additional localities, 

At some point in this procedure, we would find that the F-test 

showed no significant differences among the remaining localities. 

In order to proceed, we would have to return to the region and 

collect more samples from each locality, thereby increasing the 

F-test f s power that is, its ability to identify differences among 

means* We can be reasonably confident that no two localities are 

precisely the same, and so it is evident that continuation of this 

procedure would eventually show that all the locality means are 

different at least in theory. Realization of this points out the 

fallacy of trying to develop a purely statistical test that will 

serve to identify geochemical anomalies. The results of the test 

will always depend partly on the power of the experiment--specifi 

cally the number of independent geochemical values from each 

sampling locality. A more realistic approach might be to develop 

some operational procedure that will serve to identify sampling 

localities that are sufficiently distinct from the others to be 

referred to as anomalous localities worthy of further field 

investigation. One such operational procedure will be described 

in step (9).
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9) When the means of the sampling localities are ordered by magnitude, 

they either form a rather continuous series with no apparent gaps 

(i.e., notable differences between adjacent means), or such gaps 

may appear and suggest that the populations for some of the 

localities are truly different from the others and, perhaps,

geochemically anomalous. This will be especially suggestive if
* 

the apparently anomalous localities are closely spaced or are in

parts of the region that appear geologically favorable (as indicated, 

perhaps, by the presence of fractures, alteration, intrusives, etc.). 

The statistical question here is "how large must these 'gaps 1 be 

to attract our interest?" If all of the locality population means 

were actually the same, our estimates of the means would differ due 

to sampling and analytical errors, and gaps of some magnitude would 

appear as a result. The expected maximum gap would be some multiple 

of the standard error of the locality means that is, of the degree 

to which the population means were known. If the standard error of 

the locality means is denoted by-4*»and the multiple by the coeffi 

cient,^ , the maximum gap to expect lOOp percent of the time if 

all population means are exactly the same is:

SSR « c/>-*£ < 51 >

If the means are in terms of logarithms (base 10), the gaps between 

adjacent means in the ordered series would be measured by G*. 

where 4j/f^ is the xl^t geometric mean in the ordered series. In this 

case, the maximum expectable gap at the 9 probability level is given

b?: S5R
55F => 10

(52)
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We shall refer to 5SR as the "shortest significant range" and to 

SSFas the "smallest significant factor."

The remaining question here is in regard to the appropriate 

values for Cp. The answer is clear if there are only two locality 

means an uncommon situation in exploration geochemistry. With 

only two means, Cp is equal to £p\/£ t where £^ is Student's £*  

that is, 53/?is equal to the well-known "least significant difference." 

Duncan (1955) gives tables, for p = 0.05 and p - 0.01, for "signi 

ficant Studentized ranges" that are analogous toCp, but computer- 

simulation experiments indicate that they are too large if the 

number of means,/?., is greater than two, and that they should not 

be used in the context of this discussion or in equation (51)

as applied here. The reason

is that Duncan's test and a similar test by Tukey are designed to 

compare each computed mean with every other mean in the set rather 

than to compare adjacent means in an ordered set. The simulation 

experiments led to some other values of Cp that can be regarded as 

empirical approximations of the true unknown values of Cp. The 

approximations of Cp vary with the number of localities, /I. , the 

number of samples from each locality,/T^ , and the selected proba 

bility, P. They are summarized in figure 20 for the case where 

A~ * 2 and p is chosen as 0.10, 0.05, and 0.01. A dashed curve 

gives the values of Cp for f> * 0.05 and /?- » CO and shows that Cp 

does not change greatly when/fg is increased. If /7- * 3, the

appropriate curve is about midway between the curves for flA * 2
P
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and (1* » oo. if /k * 10, the appropriate curve nearly coincides 

with the curve for /f- » Oo .

As an illustration of the use of the empirical approximation 

in the search for a significant gap in a series of ordered means, 

consider the following seven means each the average of two:

(1) (2) (3) (4) (5) I (6) (7) 
0.29 0.30 0.31 0.5.4 0.67 1.05 1.16

The value of £p, for p - 0.05, from figure 20 is about 2.4. 

If the standard error of the means was estimated as 0.1, the 

shortest significant range is:

ssa - Cp^^ - A.i^oj - o.zj (53)

The vertical arrow in the ordered array of means points to the only 

gap in the array that is significant at the 0.05 probability level- 

the sampling localities represented by the 6th and 7th means might 

warrant further investigation. At least some reason should be sought 

as to why these localities appear different from the others.

It should be remembered that the test described above suffers from 

the same shortcoming as the F-test described previously. If the power 

of the test is repeatedly increased by collecting and analyzing more 

samples from each locality, eventually it would be possible to place 

a vertical arrow between each pair of adjacent means, indicating that 

they are all significantly different from their neighbors in the ordered 

list. The data available, however, are sufficient to indicate that 

localities (6) and (7) are different from localities (1) to (5); the 

difference is sufficiently pronounced to become apparent by collecting
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and analyzing only two samples per locality. The available data, on 

the other hand, provide no justification for referring to any of the 

localities (1) to (5) as geochemically anomalous.

If the F-test indicated that the variance among sampling locality
2.

means, -d, , was not significantly different from zero, or if the
^^

test, as applied above, failed to identify gaps in the ordered array 

of locality means, one would have to conclude that none of the sampling 

localities have been shown to be geochemically anomalous with respect 

to the others. However, if one increased the power of both tests by 

collecting additional samples from each locality, so-called anomalous 

localities might be identified. All of this points to the fact that 

all degrees of anomalies exist and that each geochemical exploration 

effort must involve some working definition for an "anomaly." It is 

suggested that the approximate empirical teat is more reasonable 

than the commonly used criterion that is based on some cut-off or 

threshold that is equal to some multiple of the average background 

concentration. The advantage of the empirical approximation is that it 

varies with the compositional variability within sampling localities 

and the analytical imprecision. Thus, it considers the errors caused 

by both sampling and laboratory analysis.

It is also suggested here that the quantity SSR 

its antilog, SSF, could be used as an appropriate standardized contour 

interval for geochemical maps if contours are to be used. Use of 

this interval would serve to avoid many of the closely-spaced contours 

that represent non-significant geochemical differences. Alternatively,
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each geochemical map should contain the quantity SSR or SSF in the 

"legend or title as an indicator of the stability of the plotted 

geochemical values. 

IX. Suggestions for further reading.

Most textbooks on geostatistical methods give little more than 

passing reference to the matter of sampling design even though almost 

all of the statistical methods discussed can be invalidated by improper 

sampling. It is particularly important that the calculated "degrees 

of freedom" employed statistical testing be based on the number of 

independent observations of the variable rather than on merely the 

number of values that went into the calculated estimate of the variance, 

The textbooks by Krumbein and Graybill (1965), Griffiths (1967), and 

Koch and Link (1970) all include chapters on "sampling" and each cites 

a number of useful references, but the treatments of the subject are 

far less than is warranted by its importance. A number of papers by 

Krumbein and his colleagues, however, comprise a highly significant 

contribution to the matter of sampling in geology and geochemistry; 

see, in particular, Krumbein (1953, 1955, 1960), Krumbein and Miller 

(1953, 1954), and Krumbein and Slack (1956). The latter paper has 

provided a basis for the sampling designs employed in a large number 

of geochemical surveys conducted by the U.S. Geological Survey. The 

paper by Krumbein (1960) gives some fundamentally important concepts 

regarding geological sampling especially the concepts of target and 

sampled populations. Some of these concepts, as they apply in 

geochemical sampling, have been discussed further by Miesch (1967a).
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One of the most thorough and statistically rigorous geochemical 

sampling programs was conducted by A. K. Baird and his colleagues 

at Famona College, California* The purpose of the program was to 

study chemical variations in the Lakeview Mountains pluton of the 

southern California batholith; the work is described by Baird, 

Mclntyre, Welday, and Morton (1967) and by Morton, Baird, and Baird 

(1969). A similar study was described by Baird, Mclntyre, Welday, 

and Madlem (1964). These papers are highly recommended.

One of the most extensive applications of statistical methods to 

the design of geochemical sampling programs has been in a geochemical 

survey of the State of Missouri. The sampling programs were directed 

at bedrock, unconsolidated surficial deposits, soils, native vegetation 

and farm crops, and both surface and ground waters. General descrip 

tions of the sampling designs were given by Connor, Feder, Erdman, 

and Tidball (1972) and by Miesch (1976). The methods and results for 

selected soils were given by Tidball (1976); those for selected farm 

crops and associated soils by Erdman, Shacklette, and Keith (1967a); 

and those for native vegetation and associated soils by Erdman, 

Shacklette, and Keith (1976b). Reports from other phases of the survey 

are in preparation.

A popularized explanation of the application of formal sampling 

design procedures to geochemical sampling was given by Connor and 

Myers (1973). Tourtelot and Miesch (1975) gave a general description 

of formal sampling design procedures for use in environmental geochem 

istry.
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The serious student of sampling will want to consult other 

references that are not especially geologically oriented. The 

apparent definitive work on sampling theory is a book by Cochran 

(1963), although another book by Mendenhall, Ott, and Scheaffer 

(1971) offers a more elementary treatment and should be extremely 

useful to beginning students. An excellent introduction to the 

basic concepts of analysis of variance was given by Tippett (1952), 

and Bennett and Franklin (1954) gave useful discussions of the 

application of analysis of variance methods to problems in chemistry. 

Classical papers on analysis of variance methods are those by Eisenhart 

(1947) on the assumptions underlying the methods, by Cochran (1947) 

on the consequences of failure to meet these assumptions, and by 

Bartlett (1947) on the use of data transformations.
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01
TABLE A» RANDOM NORMAL NUMBERS, M " 0, <r - 1* 

02 03 04 05 06 07 08 09 10

0.464
0.060
1.486
1.022
1.394

0.906
1.179

-1.501
-0.690 

1.372

-0.482
-1.376
-1.010
-0.005 
1.393

-1.787
-0.105
-1.339 
1.041 
0.279

-1.805
-1.186 
0.658

-0.439
-1-.399

0.199
0.159
2.273
0.041

-1.132

0.768
0.375

-0.513 
0.292 
1.026

-1.334
-0.287 
0.161

-1.346 
1.250

0.630
0.375

-1.420
-0.151
-0.309

0.424
0.593
0.862
0.235

-0.853

0.137
-2.526
-0.354
-0.472
-0.555

-0.513
-1.055
-0.488 
0.756 
0.225

1.678
-0.150 
0.598

-O.S99
-L163

-0.261
-0.357 
1.S27 
0.535

-2.056

-2.008 
1.180

-1.141 
0.358

-0.230

0.208
0.272
0.606

-0.307
-2.098

0.079
-1.658
-0.344
-0.521 
2.990

1.278
-0.144
-0.886 
0.193

-0.199

-0.537
-1.941 
0.489

-0.243 
0.531

-0.444 
0.658

-0.885
-O.C28 
0.402

2.455
-0.531
-0.634 

1.279 
0.046

-0,525 
0.007

-0.162
-1.618 

0.378

-0.057 
1.356

-0.918 
0.012

-0.911

1.237
-1.384
-0.959 

0.731 
0.717

-1.633
1.114
1.151

-1.939 
0.385

-1.083
-0.313 

0.606 
0.121 
0.921

-1.473
-0.851 

0.210 
1.266

-0.574

-0.568
-0.254
-0.921
-1.202
-0.288

0.782
0.247

-1.711
-0.430 

0.416

0.593
-1.127
-a. 142
-0.023 

0.777

-0.323
-0.194 

0.6U7 
3.521 
0.321

0595
0.769

-0.136
-0.345 

0.761

-1.229
-0.561 

1.598
-0.725 

1.231

1.046
0.360
0.424
1.377

-0.873

0.542 
O.S82

-1.210 
0.891

-0.649

-0.219 
0.084

^0.747 
0.790 
0.145

0.034
0.234

-0.736
-1.206
-0.491

-0.109 
0.574

-0.509 
0.394 
1.810

O.OGO
-0.491
-1.186
-0.7G2
-1.541

0.993
-1.407
-0.504
-0.463 

0.833

-0.068 
0.543 
0.926 
0.571 
2.945

0.881
0.971
1.033

-0.511 
0.181

-0.486
-0.256 

0.065
1.147

-0.199

-0.508
-0.992 

0.969 
0.983

-1.096

0.250
1.265

-0.927
-0.227
-0.577

-0.291
-2.828 

0.247
-0.584 

0.446

-2.127
-0.656 

1.041
-0.899
-1.114

-0.515
-0.451 

1.410
-1.045 

1.378

0.499 
O.GGo 
0.754 
0.298 
1.456

-0.106
-1.579 

0.532
-0.8'JO 

0.410

0.296
-1.558 

1.375
-1.851 

1.974

-0.934 
0.712 
0.203

-2.051
-0.736

0.856
-0.212 

0.415
-0.121
-0.246

-1.630
-0.116
-1.141
-1.330
-1.396

-0.166
-0.202 

0.425 
0.602 
0.237

1.221
-0.439 

1.291 
0.541

-1.661

0.665
0.340
0.008
0.110
1.297

-0.566
-1.181
-0.518 

O.S43 
0.584

-0.431
-0.135
-0.732 

1.049 
2.040

0.116
-1.616 

1.381
-0.3U4
-0.349

-0.288 
0.187 
0.7S5 
0.194

-0.258

1.579
1.090
0.448

-0.457 
0.960

-0.491 
0.219

-0.169 
1.096 
1.239

-0.146
-1.698
-1.041 

1.620 
1.047

0.032 
0.151 
0.290 
O.S73

-0.289

1.119
-0.792 

0.063 
0.484 
1.045

0.084
-0.086 

0.427
-0.528
-1.433

2.923
-1.190 

0.192 
0.942 
1.216

1.705
-0.145
-0.066 

1.810
-0.124

0.484
1.458
0.022

-0.538
-1.094

1.298
-1.11)0
-0.963 

1.11)2 
0.412

0.161
-0.631 

0.748
-0.218
-1.530

-1.983 
0.779 
0.313 
0.481

-2.574

-0.392
-2.832 

0.362
-1.040 

0.089

0.079
-0.376
-0.902
-0.437 

0.513

0.004
-1.275
-1.793
-0.986
-1.363

-0.880
-0.158
-0.831
-0.813
-1.345

0.500
-0.318
-0.432 

1.045 
0.733

1.164
-0.498 

1.006- 
2.885 
0.196

-1.272 
1.202

-0.281 
1,707 
0.580

0.241
0.022

-0.<ST>3
-0.501 

0.439

-1.885
-0.255
-0.423 

0.857
-0.260

-2.830 
0.953

-0.973
-1.691
-0.558

-0.627
-1.108
-1.726 

0.524
-0.573

0.471
-0.310 

0.610
-0.220 

0.738

-2.015
-0.623
-0.699 

0.481
-0.586

-0.579
-0.120 

0.191 
0.071

-3.001

0.359
-0.094 

1.501 
0.031 
0.402

0.884
0.457

-0.7-98
-0.768 

0.023

1.066
0.736

-0.342
-0.188 

1.395

-0.957 
0.525

-1.865
-0.273
-0.035

0.371
-0.702
-0.432
-0.465 
0.120

-0.238
-0.869
-1.016 
0.417 
0.056

0.561
-2.357 
1.956

-0.281 
0.932

-1.029 
0.479 
2.709

-0.057
-0.300

-0.594
-1.047
-1.347 
0.996

-1.023

0.551
0.418
0.074
0.524
0.479

0.326
1.114
1.068
0.772
0.226

-0.298 
1.064 
0.162

-0.129
-1.204

1.097
-0.916 
1.222

-1.153 
1.298

*From the RAND Corporation, as reproduced in 
Dixon and Massey (1957)»



Exercise 1.

a) Draw a sample, ^-(Ji* 1,10), from N(lQO,400).
2.

b) Estimate the population mean, A f and variance, &~.

c) Estimate the standard error of the mean from

d) Given the values of x from all members of the class, compute 

the standard deviation of x   Compare wither from (c).

a. />
Note: The equation ->4 = ________ m is algebraically equal to

equation (13) in the syllabus and is easier for purposes of 

computation .



Exercise 2.

a) Draw a sample, ^ (^ « 1, 10), frcm^VC2.1250,0.3025). Note: Parameters 

of-A. are logs - base 10,

b) Estimate the population mean and variance of % , -where ft » ^°8io

c) Estimate the standard error of the mean log.

d) Given the values of 4 from all members of the class, compute the 
standard deviation of 4 . Compare with/4u from (c).

e) Compute the ranges a - A. to 5 "*^± an<^ J" 0*"4;*- *° ^f *"^4!i- 

These limits are in logs; obtain the antilogs (ppm values}.

f) Using the answers from (b), compute the geometric mean (GM) and

geometric deviation (GD). Now compute the ranges GM/GD to GMxGD and 

GM/GD2 to GMxGD2 . Compare with limits from (e).



Sxercise 3.

. *
a) Using the formulae given in table 1 and the parameters for the

lognormal distribution used in exercise 2 (/f » 2.1250, <?   0.3025), 

compute the true arithmetic mean and standard deviation for the 

distribution.

b) Now take the antilogs of the 10 log values obtained in exercise (2a) 

and, from these, estimate the arithmetic mean and standard deviation 

in the usual manner. Compute the limits for the range from X--*- to 
X * *~ .

c) Now derive Sichel's t-estimator of the arithmetic mean. Use your 

results from erercise (2f).

^Recall that the formulae in table 1 use the mean and variance of 
logs to the base e. Die conversion factors for the mean and variance 
are, respectively, 2-30259 and 5-30190.

2.1250 x 2.30259 - 4.8930 
0.3025 x 5.30190 « 1.6038

/< '



Exercise k.

Using the 10 antilog (ppm) values from exercise (3), assume that the

lover limit of analytical determination vas 100 ppm and exclude a-ll
<p 

values lover than this amount. What is the detection ratio I Nov

estimate the population geometric mean and geometric deviation by the 

methods of Cohen. Compare these estimates vith those obtained in 

exercise (2f) where all 10 values vere used.



Exercise 5.

a) Draw two samples, ^ and Yj[ (i-l,10)> from N(2,0.25) and N(l,0.49), 

respectively. Form 10 values of Z^ from Z. » Xi + Y^.

b) Estimate the variances of X^, Y., and Z^. Note that the sum of the 

first tvo variances is not precisely equal to the third. Why ?

c) Estimate the covariance for Xi and Yj. Double this and add it to 

the sum of the variances of X^ and Y,. Ohe result should be equal 

to the variance of Z^.

d) Estimate the correlation between X, and Yi «

131



Exercise 6.

a) Suppose that we have selected 5 samples from a rock unit using 

randomization procedures and that the "true" values for the 5 

samples are as listed under T^ (i » 1,5) belov. Compute the 

variance of the 5 values.

b) Now suppose that each sample was analyzed twice and that the

analytical errors were as given under E, . below. Note that the^ J 
variances of the two errors differ from one sample to the next.

Compute the error variance for each sample and then the average 

error variance.

c) The values under X. , below simulate the analytical data that 

results from the "true" values plus the analytical errors. 

Perform an analysis of variance to estimate the variance among 

samples and the analytical error variance. Note that .the error 

variance is the same as the average obtained in part (b) above.

d) Note that the variance among the samples estimated by analysis 

of variance is: less than that obtained in part (a) above. 

Subtract one-half of the analytical error variance from the 

latter value. Now the two estimates of variance among the 5 

samples should agree. Why does this work /

J
1
2
1
2
1
2
1
2
1
2

TAi

12

15

28

20

1*2

E.ij

+3
-1
+5
-3
-4
+6
42
0

+7
-5

j

15
11
20
12
2^
3^
22
20
^9
37

Note that the mean error is equal for AIT samples, dis insures 

that the covariance for T^ and E is exactly zero.



Exercise 7«

. 
a) Draw two samples, P.- and F (i » 1,10), from N(0,l). Now given

the equations:

0.707?.^ + 0.7077^ and

compute 10 values each of X' and Y'

b) Generate 10 values of X. from

Xi " 3Xi * 2 

and 10 values of Y from

The 10 pairs of Xi and Y. are from populations N(2,32 ) and 

respectively. The bivariate population correlation coefficient is

(0.707 x 0.9^9) + (0.707 x 0.316) -+0.894

c) Estimate the means and variances of X. and Y. from the 10 pairs 

of values, and the correlation coefficient.

d) About two-thirds of the estimates of the correlation coefficient, 

from all members of the class, should be in the range from 

0.786 to 0.9^9. Are they T



Exercise ti.

a) Select 10 randomly located points within area "A".

Area "A'

» 1. J  J.-l. J.-1_.L i.-U.X .1. .l_J_t. l.l_J.- I I I

b) Select 10 randomly located points within the sandstone unit

area "B".
Sandstone

Area "B 1

c) Sample area "C" according to the model: - ' ' T - 0 . --.

where ^..|t is a sample value, />i is the grand mean, ^ designates a 

"quad", \ . designates a "subquad" within a quad, and .t % /; designates 

a sampling "point" within a subquad. Let «- range from 1 to 4, ^ range 

from 1 to 2, and  * range from 1 to 3. Taking the three estimated 

variances as  -' . , ^ * , and L. ^ , set up the equati.on for estimating the 

variance of the grand mean estimate, using the finite population 

correction factors ( see equation 2^a of the syllabus ) -

Area
"quad"

"subauad"



Exercise 9.

a) Assume that five localities have been sampled - two samples from 

each - but that the "true" average value for each locality is 100 

ppm. That is, if the truth were known, all localities are exactly 

the same. Now assume that the sum of the sampling and analytical 

errors is distributed as Jv (0,0.09). Draw two values from this 

population for each of the five localities.

b) For each of the five localities, add each of the two error values 

to the log of 100. The 10 resulting values may be taken as the logs 

of the geocheraical data - two data values for each of five localities.

c) Compute the geometric mean for each locality.

d) Using the log data, estimate the variance of the errors due to

sampling plus analysis. Compute the empirical approximation of the 

"shortest significant range". Take the antilog and call this the 

"smallest significant factor".

e) Order the five geometric means by increasing magnitude. Do any two 

adjacent means differ by more than the "shortest significant factor". 
Some should. With X members in the class, 0.05X members should 

uncover a "false" geochemical anomaly - working at the 0.05 probability 

level.



Exercise 10.

a) Suppose that a preliminary geochemical survey of an area has been 

made in preparation for a final geochemical program. Five localities 

were sampled, two samples were taken at random points from each loc 

ality, and each sample was analyzed twice in a randomized sequence. 

The resulting data are plotted on the map below:

4.6,7.6 
66.,50,

Each first- 
order stream 
is a locality,

(Data as ppm)

Transform the data to logs (base 10) and estimate the log variance 

among localities, among sampling points within localities, and 

between duplicate analyses.

b) Compute the standard error of a locality mean, the empirical approx 

imation of the "shortest significant range" and the "smallest signi 

ficant factor (SSF)" at the 0.05 probability level.

c) Assume that the estimated variance components, from part (a) are 

stable and that the cost of collecting a sample is about equal to 

the cost of analyzing one. Now use the same equations as used in 

part (b) to develop an optimum sampling plan for the final program.

That is, how many samples per locality should be taken in the final
7 program, anri how many analyses should be made of each sample.

Hint: "SSF" is a measure of the power of the experiment; a relative 

measure of the cost per sampling locality is given by (n« + n« n^ ), 

where ua is the number of samples per locality and n^ is the number 

of analyses per sample. First, assume nv   1 and plot "SSF" against 

relative cost, then assume ny » 2, etc.
d) What would the relative cost per sampling locality be if we collected 

20 samples at each and combined them into a single composite sample
o O

which was analyzed only once !' What "SSF" should we expect ;

, 2C,



Exercise 11.

a) Assume that a region has been sampled with a "barbell -type" design 

according to the model:

where the subscripted Greek letters represent the folloving: 

oL areas 250 Km apart vithin the region 

ft plots 50 Km apart within areas 

if sites 10 Km apart within plots 

& samples 2 Km apart within sites 

 . replicate analyses of samples

The purpose of this initial sampling was to devise a final sampling 

program that would allow us to construct a geochemical map that 

describes the geochemical pattern of variation over the region.

The variance components estimated from the initial data are 

as follows:
z-

°^_ List the ranges of scales of variation
ob, -0.36 represented by each of the 1st four.
cr^ « 0 OOOU variance components. Draw a rough sketch
X * showing the general nature of the
&£ «0.13 geochemical profile.

fl£ - 0.49

b) If you were to conduct the final geochemical program and wanted

to describe as much of the geochemical variation as possible, at
*p 

some reasonable cost, how would you proceed . Would you use the

same analytical method ? How would you space the sampling localities .

c) Use the variance components to construct a "cumulative variance 

curve" for the "natural" variation. What percentage of the total 

natural variance might be mapped by spacing the sampling localities

at 2 Km f At 10 Km ? At 50 Km ? How many more sampling localities
.? 

would be required to sample at 2 Km rather than 10 f What would be
gained f

d) Assume that the sampling localities are to be spaced at 10 Km and 

that we wish to achieve a v ratio of at least 3*0* What diameter 

should each locality have / How many random samples should be taken 

in each / How many times should each sample be analyzed if the same 

analytical method is to be used ?


